




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
杭州市錦繡中學(xué)七年級下冊數(shù)學(xué)期末試卷專題練習(xí)(解析版)一、解答題1.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.2.如圖1,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在,之間,且滿足.(1)證明:;(2)如圖2,若,,點(diǎn)在線段上,連接,且,試判斷與的數(shù)量關(guān)系,并說明理由;(3)如圖3,若(為大于等于的整數(shù)),點(diǎn)在線段上,連接,若,則______.3.如圖,直線,點(diǎn)是、之間(不在直線,上)的一個動點(diǎn).(1)如圖1,若與都是銳角,請寫出與,之間的數(shù)量關(guān)系并說明理由;(2)把直角三角形如圖2擺放,直角頂點(diǎn)在兩條平行線之間,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn),點(diǎn)在線段上,連接,有,求的值;(3)如圖3,若點(diǎn)是下方一點(diǎn),平分,平分,已知,求的度數(shù).4.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點(diǎn),點(diǎn)M,點(diǎn)N分別是直線CD,EF上一點(diǎn)(不與P,Q重合),連接PM,MN.(1)點(diǎn)M,N分別在射線QC,QF上(不與點(diǎn)Q重合),當(dāng)∠APM+∠QMN=90°時,①試判斷PM與MN的位置關(guān)系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點(diǎn)作AB的平行線)(2)點(diǎn)M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關(guān)系.(注:此題說理時不能使用沒有學(xué)過的定理)5.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過點(diǎn)作,分別交、于點(diǎn)、,繞著點(diǎn)旋轉(zhuǎn),但與、始終有交點(diǎn),問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.二、解答題6.如圖1,E點(diǎn)在上,..(1)求證:(2)如圖2,平分,與的平分線交于H點(diǎn),若比大,求的度數(shù).(3)保持(2)中所求的的度數(shù)不變,如圖3,平分平分,作,則的度數(shù)是否改變?若不變,請直接寫出答案;若改變,請說明理由.7.將兩塊三角板按如圖置,其中三角板邊,,,.(1)下列結(jié)論:正確的是_______.①如果,則有;②;③如果,則平分.(2)如果,判斷與是否相等,請說明理由.(3)將三角板繞點(diǎn)順時針轉(zhuǎn)動,直到邊與重合即停止,轉(zhuǎn)動的過程中當(dāng)兩塊三角板恰有兩邊平行時,請直接寫出所有可能的度數(shù).8.已知,將一副三角板中的兩塊直角三角板如圖1放置,,,,.(1)若三角板如圖1擺放時,則______,______.(2)現(xiàn)固定的位置不變,將沿方向平移至點(diǎn)E正好落在上,如圖2所示,與交于點(diǎn)G,作和的角平分線交于點(diǎn)H,求的度數(shù);(3)現(xiàn)固定,將繞點(diǎn)A順時針旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時,請直接寫出的度數(shù).9.如圖1所示:點(diǎn)E為BC上一點(diǎn),∠A=∠D,AB∥CD(1)直接寫出∠ACB與∠BED的數(shù)量關(guān)系;(2)如圖2,AB∥CD,BG平分∠ABE,BG的反向延長線與∠EDF的平分線交于H點(diǎn),若∠DEB比∠GHD大60°,求∠DEB的度數(shù);(3)保持(2)中所求的∠DEB的度數(shù)不變,如圖3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不發(fā)生變化,請求它的度數(shù),若發(fā)生改變,請說明理由.(本題中的角均為大于0°且小于180°的角).10.已知:如圖1,,點(diǎn),分別為,上一點(diǎn).(1)在,之間有一點(diǎn)(點(diǎn)不在線段上),連接,,探究,,之間有怎樣的數(shù)量關(guān)系,請補(bǔ)全圖形,并在圖形下面寫出相應(yīng)的數(shù)量關(guān)系,選其中一個進(jìn)行證明.(2)如圖2,在,之兩點(diǎn),,連接,,,請選擇一個圖形寫出,,,存在的數(shù)量關(guān)系(不需證明).三、解答題11.小明在學(xué)習(xí)過程中,對教材中的一個有趣問題做如下探究:(習(xí)題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點(diǎn).求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點(diǎn),其反向延長線與邊的延長線交于點(diǎn),則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點(diǎn),使得,的平分線交于點(diǎn).的外角的平分線所在直線與的延長線交于點(diǎn).直接寫出與的數(shù)量關(guān)系.12.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動,當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動時,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由;(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動時(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.13.如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1.(1)當(dāng)∠A為70°時,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請寫出∠A與∠An的數(shù)量關(guān)系______;(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=______.(4)如圖3,若E為BA延長線上一動點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動時有下面兩個結(jié)論:①∠Q+∠A1的值為定值;②∠Q-∠A1的值為定值.其中有且只有一個是正確的,請寫出正確的結(jié)論,并求出其值.14.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.(4)若點(diǎn)P運(yùn)動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.15.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對應(yīng)點(diǎn)分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點(diǎn)順時針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時,請直接寫出旋轉(zhuǎn)的時間.【參考答案】一、解答題1.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時,②當(dāng)15<t≤30時,③當(dāng)30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問題.2.(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)解析:(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結(jié)論;(3)作CF∥ST,設(shè)∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設(shè),則.,,,,.即.(3)作,則如圖,設(shè),則.,,,,,故答案為.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和判定,解題關(guān)鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關(guān)系式.3.(1)見解析;(2);(3)75°【分析】(1)根據(jù)平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì)即可求解.(2)根據(jù)平行線的性質(zhì)、對頂角的性質(zhì)和平角的定義解答即可.(3)根據(jù)平行線的性質(zhì)和角平分線的定義以解析:(1)見解析;(2);(3)75°【分析】(1)根據(jù)平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì)即可求解.(2)根據(jù)平行線的性質(zhì)、對頂角的性質(zhì)和平角的定義解答即可.(3)根據(jù)平行線的性質(zhì)和角平分線的定義以及三角形內(nèi)角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內(nèi)錯角相等),∵l∥MN,PQ∥MN,∴l(xiāng)∥PQ,∴∠3=∠1(兩直線平行,內(nèi)錯角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設(shè)BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點(diǎn)睛】本題考查了平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì),解題的關(guān)鍵是根據(jù)平行找出角度之間的關(guān)系.4.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條解析:(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點(diǎn)N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點(diǎn)N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當(dāng)點(diǎn)M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,同位角相等等知識是解題的關(guān)鍵.5.(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補(bǔ)角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補(bǔ)角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)解析:(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補(bǔ)角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補(bǔ)角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點(diǎn)睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.二、解答題6.(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長交于點(diǎn),根據(jù),,可得,所以,可得,又,進(jìn)而可得結(jié)論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再解析:(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長交于點(diǎn),根據(jù),,可得,所以,可得,又,進(jìn)而可得結(jié)論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再根據(jù)比大,列出等式即可求的度數(shù);(3)如圖3,過點(diǎn)作,設(shè)直線和直線相交于點(diǎn),根據(jù)平行線的性質(zhì)和角平分線定義可求的度數(shù).【詳解】解:(1)證明:如圖1,延長交于點(diǎn),,,,,,,,;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設(shè),,比大,,解得的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過點(diǎn)作,設(shè)直線和直線相交于點(diǎn),平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).7.(1)②③;(2)相等,理由見解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質(zhì)分別判定即可;(2)利用角的和差,結(jié)合∠CAB=∠DAE=90°進(jìn)行判斷解析:(1)②③;(2)相等,理由見解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質(zhì)分別判定即可;(2)利用角的和差,結(jié)合∠CAB=∠DAE=90°進(jìn)行判斷;(3)依據(jù)這兩塊三角尺各有一條邊互相平行,分五種情況討論,即可得到∠EAB角度所有可能的值.【詳解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①錯誤;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正確;③若BC∥AD,則∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正確;故答案為:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,則∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,則∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,則∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,則∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE∥BC,則∠C=∠CAE=45°,∴∠EAB=45°+90°=135°;綜上:∠EAB的度數(shù)可能為30°或45°或75°或120°或135°.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),角平分線的定義,解題的關(guān)鍵是理解題意,分情況畫出圖形,學(xué)會用分類討論的思想思考問題.8.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當(dāng)B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當(dāng)BC∥DE時,當(dāng)BC∥EF時,當(dāng)BC∥DF時,三種情況進(jìn)行解答即可.【詳解】解:(1)作EI∥PQ,如圖,∵PQ∥MN,則PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α=DEA-∠BAC=60°-45°=15°,∵E、C、A三點(diǎn)共線,∴∠β=180°-∠DFE=180°-30°=150°;故答案為:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,F(xiàn)H分別平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)當(dāng)BC∥DE時,如圖1,∵∠D=∠C=90,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;當(dāng)BC∥EF時,如圖2,此時∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;當(dāng)BC∥DF時,如圖3,此時,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.綜上所述,∠BAM的度數(shù)為30°或90°或120°.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).9.(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點(diǎn)F,根據(jù)平行線的性質(zhì)推出;(2)如圖2,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB,根據(jù)AB∥CD,AB∥E解析:(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點(diǎn)F,根據(jù)平行線的性質(zhì)推出;(2)如圖2,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB,根據(jù)AB∥CD,AB∥ES推出,再根據(jù)AB∥TH,AB∥CD推出,最后根據(jù)比大得出的度數(shù);(3)如圖3,過點(diǎn)E作EQ∥DN,根據(jù)得出的度數(shù),根據(jù)條件再逐步求出的度數(shù).【詳解】(1)如答圖1所示,延長DE交AB于點(diǎn)F.AB∥CD,所以,又因?yàn)椋?,所以AC∥DF,所以.因?yàn)?,所以?2)如答圖2所示,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB.設(shè),,因?yàn)锳B∥CD,AB∥ES,所以,,所以,因?yàn)锳B∥TH,AB∥CD,所以,,所以,因?yàn)楸却?,所以,所以,所以,所?3)不發(fā)生變化如答圖3所示,過點(diǎn)E作EQ∥DN.設(shè),,由(2)易知,所以,所以,所以,所以.【點(diǎn)睛】本題考查了平行線的性質(zhì),求角的度數(shù),正確作出相關(guān)的輔助線,根據(jù)條件逐步求出角度的度數(shù)是解題的關(guān)鍵.10.(1)見解析;(2)見解析【分析】(1)過點(diǎn)M作MP∥AB.根據(jù)平行線的性質(zhì)即可得到結(jié)論;(2)根據(jù)平行線的性質(zhì)即可得到結(jié)論.【詳解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E解析:(1)見解析;(2)見解析【分析】(1)過點(diǎn)M作MP∥AB.根據(jù)平行線的性質(zhì)即可得到結(jié)論;(2)根據(jù)平行線的性質(zhì)即可得到結(jié)論.【詳解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.證明:過點(diǎn)M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵M(jìn)P∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;證明:過點(diǎn)M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°;∵M(jìn)Q∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如圖2第一個圖:∠EMN+∠MNF-∠AEM-∠NFC=180°;過點(diǎn)M作MP∥AB,過點(diǎn)N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如圖2第二個圖:∠EMN-∠MNF+∠AEM+∠NFC=180°.過點(diǎn)M作MP∥AB,過點(diǎn)N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.三、解答題11.[習(xí)題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可解析:[習(xí)題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;[變式思考]根據(jù)角平分線的定義和對頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習(xí)題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點(diǎn)共線
AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點(diǎn)睛】本題考查三角形的外角的性質(zhì),直角三角形兩銳角互余,角平分線的有關(guān)證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個外角等于與它不相鄰的兩個內(nèi)角之和,理解并掌握是解決此題的關(guān)鍵.12.(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時,;當(dāng)點(diǎn)P在射線AM上時,.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時,;當(dāng)點(diǎn)P在射線AM上時,.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分兩種情況:①點(diǎn)P在A、M兩點(diǎn)之間,②點(diǎn)P在B、O兩點(diǎn)之間,分別畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出結(jié)論.【詳解】解:(1)∠CPD=∠α+∠β,理由如下:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)當(dāng)點(diǎn)P在A、M兩點(diǎn)之間時,∠CPD=∠β-∠α.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時,∠CPD=∠α-∠β.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點(diǎn)睛】本題考查了平行線的性質(zhì)的運(yùn)用,主要考核了學(xué)生的推理能力,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯角,利用平行線的性質(zhì)進(jìn)行推導(dǎo).解題時注意:問題(2)也可以運(yùn)用三角形外角性質(zhì)來解決.13.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;(3)先根據(jù)四邊形內(nèi)角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內(nèi)角與外角的關(guān)系和角平分線的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結(jié)論;(4)依然要用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.【詳解】解:(1)當(dāng)∠A為70°時,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線,∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=35°;故答案為:A,70,35;(2)∵A1B、A1C分別平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠An,故答案為:∠A=2∠An.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案為:25°.(4)①∠Q+∠A1的值為定值正確.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1=∠A1CD-∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分線,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,∴∠Q+∠A1=180°.【點(diǎn)睛】本題主要考查三角形的外角性質(zhì)和角平分線的定義的運(yùn)用,根據(jù)推導(dǎo)過程對題目的結(jié)果進(jìn)行規(guī)律總結(jié)對解題比較重要.14.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點(diǎn)為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點(diǎn)為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問題的關(guān)鍵.15.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國貨物控制帶行業(yè)市場分析及投資價值評估前景預(yù)測報告
- 2025年臨沂市工程學(xué)校公開招聘教師(10名)模擬試卷及答案詳解1套
- 2025湖北省招募選派三支一扶高校畢業(yè)生1998人模擬試卷及答案詳解(名校卷)
- 2025安徽蕪湖經(jīng)濟(jì)技術(shù)開發(fā)區(qū)公辦幼兒園招聘26人考前自測高頻考點(diǎn)模擬試題及參考答案詳解一套
- 2025江蘇連云港灌江農(nóng)業(yè)發(fā)展集團(tuán)有限公司招聘擬聘(第二批)考前自測高頻考點(diǎn)模擬試題帶答案詳解
- 2025年中國戶外型聚酯樹脂行業(yè)市場分析及投資價值評估前景預(yù)測報告
- 2025年乾縣皖能環(huán)保電力有限公司招聘模擬試卷附答案詳解(典型題)
- 2025年四川瀘州市龍馬潭區(qū)衛(wèi)生事業(yè)單位考核招聘23人考前自測高頻考點(diǎn)模擬試題及答案詳解(網(wǎng)校專用)
- 2025河南師范大學(xué)物理學(xué)院誠聘英才模擬試卷附答案詳解(完整版)
- 2025江蘇蘇州工業(yè)園區(qū)天域幼兒園后勤輔助人員招聘1人考前自測高頻考點(diǎn)模擬試題附答案詳解(考試直接用)
- 《零售基礎(chǔ)》完整課件(共六章節(jié))
- 農(nóng)業(yè)養(yǎng)殖回收合同書10篇
- 機(jī)電維修考試題及答案
- GB/T 15340-2025天然、合成生膠取樣及其制樣方法
- 項(xiàng)目建設(shè)業(yè)務(wù)管理制度
- 梅花味精買賣協(xié)議合同
- 太平小學(xué)特異體質(zhì)學(xué)生應(yīng)急預(yù)案
- 汽車限行的報告范文
- 中學(xué)聽評課記錄完整40篇
- 盆底超聲的臨床應(yīng)用
- 高級公共營養(yǎng)師模擬考試題(附答案)
評論
0/150
提交評論