2026屆安徽省安慶市太湖縣九年級數(shù)學第一學期期末檢測模擬試題含解析_第1頁
2026屆安徽省安慶市太湖縣九年級數(shù)學第一學期期末檢測模擬試題含解析_第2頁
2026屆安徽省安慶市太湖縣九年級數(shù)學第一學期期末檢測模擬試題含解析_第3頁
2026屆安徽省安慶市太湖縣九年級數(shù)學第一學期期末檢測模擬試題含解析_第4頁
2026屆安徽省安慶市太湖縣九年級數(shù)學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆安徽省安慶市太湖縣九年級數(shù)學第一學期期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.將二次函數(shù)的圖象向右平移2個單位,再向下平移3個單位,得到的函數(shù)圖象的表達式是()A. B.C. D.2.如圖,、兩點在雙曲線上,分別經(jīng)過點、兩點向、軸作垂線段,已知,則()A.6 B.5 C.4 D.33.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.84.關(guān)于x的方程有實數(shù)根,則k的取值范圍是()A. B.且 C. D.且5.如圖,AB,AM,BN分別是⊙O的切線,切點分別為P,M,N.若MN∥AB,∠A=60°,AB=6,則⊙O的半徑是()A. B.3 C. D.6.如圖,點、分別在的邊、上,且與不平行.下列條件中,能判定與相似的是()A. B. C. D.7.拋物線的對稱軸為直線()A. B. C. D.8.已知線段c是線段a和b的比例中項,若a=1,b=2,則c=()A.1 B. C. D.9.如圖,網(wǎng)格中小正方形的邊長為1個單位長度,△ABC的頂點均在小正方形的頂點上,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AB′C′,點C在AB′上,則的長為()A.π B. C.7π D.6π10.如圖,某數(shù)學興趣小組將長為,寬為的矩形鐵絲框變形為以為圓心,為半徑的扇形(忽略鐵絲的粗細),則所得扇形的面積為()A. B. C. D.11.如圖,△ABC內(nèi)接于⊙O,AB=BC,∠ABC=120°,AD為⊙O的直徑,AD=6,那么AB的值為()A.3 B. C. D.212.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,點的坐標分別為,以原點為位似中心,把線段放大,點的對應(yīng)點的坐標為,則點的對應(yīng)點的坐標為__________.14.如圖,在平面直角坐標系中,點A在第二象限內(nèi),點B在x軸上,∠AOB=30°,AB=BO,反比例函數(shù)y=kx(x<0)的圖象經(jīng)過點A,若S△AOB=3,則k的值為________15.如圖是二次函數(shù)y=ax2+bx+c的部分圖象,由圖象可知方程ax2+bx+c=0的解是_________.16.已知圓的半徑是,則該圓的內(nèi)接正六邊形的面積是__________17.已知是關(guān)于的方程的一個根,則___________.18.某扇形的弧長為πcm,面積為3πcm2,則該扇形的半徑為_____cm三、解答題(共78分)19.(8分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=12,AD=BD=10.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當以D為圓心,以DC為半徑的圓與AB相切,求t的值.20.(8分)如圖,已知反比例函數(shù)(k1>0)與一次函數(shù)相交于A、B兩點,AC⊥x軸于點C.若△OAC的面積為1,且tan∠AOC=2.(1)求出反比例函數(shù)與一次函數(shù)的解析式;(2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值.21.(8分)如圖1,正方形的邊在正方形的邊上,連接.(1)和的數(shù)量關(guān)系是____________,和的位置關(guān)系是____________;(2)把正方形繞點旋轉(zhuǎn),如圖2,(1)中的結(jié)論是否還成立?若成立,寫出證明過程,若不成立,請說明理由;(3)設(shè)正方形的邊長為4,正方形的邊長為,正方形繞點旋轉(zhuǎn)過程中,若三點共線,直接寫出的長.22.(10分)如圖,Rt△ABC中,∠C=90°,E是AB邊上一點,D是AC邊上一點,且點D不與A、C重合,ED⊥AC.(1)當sinB=時,①求證:BE=2CD.②當△ADE繞點A旋轉(zhuǎn)到如圖2的位置時(45°<∠CAD<90°).BE=2CD是否成立?若成立,請給出證明;若不成立.請說明理由.(2)當sinB=時,將△ADE繞點A旋轉(zhuǎn)到∠DEB=90°,若AC=10,AD=2,求線段CD的長.23.(10分)如圖,在△ABC中,AD是角平分錢,點E在AC上,且∠EAD=∠ADE.(1)求證:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的長.24.(10分)如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.(1)求拋物線的解析式及其頂點Q的坐標;(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標;(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.①有一個同學說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點D運動至點Q時,折線D-E-O的長度最長”,這個同學的說法正確嗎?請說明理由.②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標;若不能,請簡要說明理由.25.(12分)如圖,△ABC與△A′B′C′是以點O為位似中心的位似圖形,它們的頂點都在正方形網(wǎng)格的格點上.(1)畫出位似中心O;(2)△ABC與△A′B′C′的相似比為__________,面積比為__________.26.某中學準備舉辦一次演講比賽,每班限定兩人報名,初三(1)班的三位同學(兩位女生,一位男生)都想報名參加,班主任李老師設(shè)計了一個摸球游戲,利用已學過的概率知識來決定誰去參加比賽,游戲規(guī)則如下:在一個不透明的箱子里放3個大小質(zhì)地完全相同的乒乓球,在這3個乒乓球上分別寫上、、(每個字母分別代表一位同學,其中、分別代表兩位女生,代表男生),攪勻后,李老師從箱子里隨機摸出一個乒乓球,不放回,再次攪勻后隨機摸出第二個乒乓球,根據(jù)乒乓球上的字母決定誰去參加比賽。(1)求李老師第一次摸出的乒乓球代表男生的概率;(2)請用列表或畫樹狀圖的方法求恰好選定一名男生和一名女生參賽的概率.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)平移的規(guī)律進行求解即可得答案.【詳解】將二次函數(shù)的圖象向右平移2個單位,可得:再向下平移3個單位,可得:故答案為:C.本題考查了平移的規(guī)律:上加下減,最加右減,注意上下平移動括號外的,左右平移動括號里的.2、C【解析】欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線的系數(shù)k,由此即可求出S1+S1.【詳解】解:∵點A、B是雙曲線上的點,分別經(jīng)過A、B兩點向x軸、y軸作垂線段,

則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個矩形的面積都等于|k|=2,

∴S1+S1=2+2-1×1=2.

故選:C.本題主要考查了反比例函數(shù)的圖象和性質(zhì)及任一點坐標的意義,有一定的難度.3、C【詳解】∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設(shè)OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.4、C【分析】關(guān)于x的方程可以是一元一次方程,也可以是一元二次方程;當方程為一元一次方程時,k=1;是一元二次方程時,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】當k=1時,方程為3x-1=1,有實數(shù)根,當k≠1時,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.綜上可知,當k≥-時,方程有實數(shù)根;故選C.本題考查了方程有實數(shù)根的含義,一元二次方程根的判別式的應(yīng)用.切記不要忽略一元二次方程二次項系數(shù)不為零這一隱含條件.注意到分兩種情況討論是解題的關(guān)鍵.5、D【分析】根據(jù)題意可判斷四邊形ABNM為梯形,再由切線的性質(zhì)可推出∠ABN=60°,從而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函數(shù)可解出半徑的值.【詳解】解:連接OP,OM,OA,OB,ON∵AB,AM,BN分別和⊙O相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,,△APO≌△BPO(AAS),∴AP=AB=3,∴tan∠OAP=tan30°==,∴OP=,即半徑為.故選D.本題考查了切線的性質(zhì),切線長定理,解直角三角形,全等三角形的判定和性質(zhì),關(guān)鍵是說明點P是AB中點,難度不大.6、A【分析】根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似即可求解.【詳解】解:在與中,∵,且,∴.故選:A.此題考查了相似三角形的判定:(1)平行線法:平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;(2)三邊法:三組對應(yīng)邊的比相等的兩個三角形相似;(3)兩邊及其夾角法:兩組對應(yīng)邊的比相等且夾角相等的兩個三角形相似;(4)兩角法:有兩組角對應(yīng)相等的兩個三角形相似.7、C【解析】根據(jù)二次函數(shù)對稱軸公式為直線,代入求解即可.【詳解】解:拋物線的對稱軸為直線,故答案為C.本題考查了二次函數(shù)的對稱軸公式,熟記公式是解題的關(guān)鍵.8、B【分析】根據(jù)線段比例中項的概念,可得a:c=c:b,可得c2=ab=2,故c的值可求,注意線段不能為負.【詳解】解:∵線段c是a、b的比例中項,∴c2=ab=2,

解得c=±,

又∵線段是正數(shù),∴c=.

故選:B.本題考查了比例中項的概念,注意:求兩個數(shù)的比例中項的時候,應(yīng)開平方.求兩條線段的比例中項的時候,負數(shù)應(yīng)舍去.9、A【分析】根據(jù)圖示知∠BAB′=45°,所以根據(jù)弧長公式l=求得的長.【詳解】根據(jù)圖示知,∠BAB′=45°,的長l==π,故選:A.此題考查了弧長的計算、旋轉(zhuǎn)的性質(zhì).解答此題時采用了“數(shù)形結(jié)合”是數(shù)學思想.10、B【分析】根據(jù)已知條件可得弧BD的弧長為6,然后利用扇形的面積公式:計算即可.【詳解】解:∵矩形的長為6,寬為3,

∴AB=CD=6,AD=BC=3,

∴弧BD的長=18-12=6,故選:B.此題考查了扇形的面積公式,解題的關(guān)鍵是:熟記扇形的面積公式11、A【詳解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圓中同弧所對的圓周角,∴∠D=∠C=10°.∵AD為直徑,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故選A.12、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選A.點睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.二、填空題(每題4分,共24分)13、【分析】由題意可知:OA=2,AB=1,,△OAB∽△,根據(jù)相似三角形的性質(zhì)列出比例式即可求出,從而求出點的坐標.【詳解】由題意可知:OA=2,AB=1,,△OAB∽△∴即解得:∴點的坐標為(4,2)故答案為:.此題考查的是相似三角形的性質(zhì),掌握相似三角形的對應(yīng)邊成比例是解決此題的關(guān)鍵.14、-33【解析】如圖所示,過點A作AD⊥OD,根據(jù)∠AOB=30°,AB=BO,可得∠DAB=60°,∠OAB=30°,所以∠BAD=30°,在Rt△ADB中,sin∠BAD=BDAB,即sin30°=BDAB=12,因為AB=BO,所以BDBO=12,所以S△ADBS△ABO=115、,【詳解】解:由圖象可知對稱軸x=2,與x軸的一個交點橫坐標是5,它到直線x=2的距離是3個單位長度,所以另外一個交點橫坐標是-1.

所以,.

故答案是:,.考查拋物線與x軸的交點,拋物線與x軸兩個交點的橫坐標的和除以2后等于對稱軸.16、【分析】根據(jù)正六邊形被它的半徑分成六個全等的等邊三角形,再根據(jù)等邊三角形的邊長,求出等邊三角形的高,再根據(jù)面積公式即可得出答案.【詳解】解:連接、,作于,等邊三角形的邊長是2,,等邊三角形的面積是,正六邊形的面積是:;故答案為:.本題考查的是正多邊形和圓的知識,解題的關(guān)鍵要記住正六邊形的特點,它被半徑分成六個全等的等邊三角形.17、2024【分析】把代入方程得出的值,再整體代入中即可求解.【詳解】把代入方程得:,即∴故填:2024.本題考查一元二次方程的解法,運用整體代入法是解題的關(guān)鍵.18、1【分析】根據(jù)扇形的面積公式S=,可得出R的值.【詳解】解:∵扇形的弧長為πcm,面積為3πcm2,扇形的面積公式S=,可得R=故答案為1.本題考查了扇形面積的求法,掌握扇形面積公式是解答本題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)結(jié)論AD·BC=AP·BP仍成立.理由見解析;(3)t的值為2秒或10秒.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證得△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;

(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證得△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;

(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=6,根據(jù)勾股定理可得DE=8,由題意可得DC=DE=8,則有BC=10?8=2,易證∠DPC=∠A=∠B,根據(jù)AD·BC=AP·BP,即可求出t的值.【詳解】(1)證明:∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴,∴AD·BC=AP·BP;(2)結(jié)論AD·BC=AP·BP仍成立理由:∵∠BPD=∠DPC+∠BPC,且∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP,∵∠DPC=∠A=θ,∴∠BPC=∠ADP,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD·BC=AP·BP;(3)如圖3,過點D作DE⊥AB于點E,∵AD=BD=10,AB=12,.∴AE=BE=6,∴,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=8,∴BC=10-8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的經(jīng)驗得AD·BC=AP·BP,又∵AP=t,BP=12-t,∴,解得:,,∴t的值為2秒或10秒.本題是對K型相似模型的探究和應(yīng)用,考查了相似三角形的判定與性質(zhì)、切線的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、等角的余角相等、三角形外角的性質(zhì)、解一元二次方程等知識以及運用已有經(jīng)驗解決問題的能力,滲透了特殊到一般的思想.20、(1);;(2)B點的坐標為(-2,-1);當0<x<1和x<-2時,y1>y2.【分析】(1)根據(jù)tan∠AOC==2,△OAC的面積為1,確定點A的坐標,把點A的坐標分別代入兩個解析式即可求解;(2)根據(jù)兩個解析式求得交點B的坐標,觀察圖象,得到當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值.【詳解】解:(1)在Rt△OAC中,設(shè)OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1(負值舍去).∴A點的坐標為(1,2).把A點的坐標代入中,得k1=2.∴反比例函數(shù)的表達式為.把A點的坐標代入中,得k2+1=2,∴k2=1.∴一次函數(shù)的表達式.(2)B點的坐標為(-2,-1).當0<x<1和x<-2時,y1>y2.本題考查反比例及一次函數(shù)的的應(yīng)用;待定系數(shù)法求解析式;圖象的交點等,掌握反比例及一次函數(shù)的性質(zhì)是本題的解題關(guān)鍵.21、(1);(2)成立,見解析;(3)和【分析】(1)由題意通過證明,得到,再通過等量代換,得到;(2)由題意利用全等三角形的判定證明,得到,再通過等量代換進而得到;(3)根據(jù)題意分E在線段AC上以及E在線段AC的延長線上兩種情況進行分類討論.【詳解】解:(1)∵四邊形和四邊形都是正方形,∴BC=CD,EC=CG,∴(SAS),∴;又∵;∴∴;(2)如圖:成立,證明:,∴,∴,又∵,∴,即(3)①如圖,E在線段AC上,∵∴OE=EC-OC==,OB==2,由勾股定理可知DG=BE=;②如圖,E在線段AC的延長線上,∵∴,∴∴在中∵∴.故答案為:和.本題考查正方形的性質(zhì)以及全等三角形,熟練掌握正方形的性質(zhì)以及全等三角形的判定與性質(zhì)是解題的關(guān)鍵.22、(1)①證明見解析;②BE=2CD成立.理由見解析;(2)2或4.【分析】(1)①作EH⊥BC于點H,由sinB=可得∠B=30°,∠A=60°,根據(jù)ED⊥AC可證明四邊形CDEH是矩形,根據(jù)矩形的性質(zhì)可得EH=CD,根據(jù)正弦的定義即可得BE=2CD;②根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAC=∠EAD,利用角的和差關(guān)系可得∠CAD=∠BAE,根據(jù)=可證明△ACD∽△ABE,及相似三角形的性質(zhì)可得,進而可得BE=2CD;(2)由sinB=可得∠ABC=∠BAC=∠DAE=45°,根據(jù)ED⊥AC可得AD=DE,AC=BC,如圖,分兩種情況討論,通過證明△ACD∽△ABE,求出CD的長即可.【詳解】(1)①作EH⊥BC于點H,∵Rt△ABC中,∠C=90°,sinB=,∴∠B=30°,∴∠A=60°,∵ED⊥AC∴∠ADE=∠C=90°,∴四邊形CDEH是矩形,即EH=CD.∴在Rt△BEH中,∠B=30°∴BE=2EH∴BE=2CD.②BE=2CD成立.理由:∵△ADE繞點A旋轉(zhuǎn)到如圖2的位置,∴∠BAC=∠EAD=60°,∴∠BAC+∠BAD=∠EAD+∠BAD,即∠CAD=∠BAE,∵AC:AB=1:2,AD:AE=1:2,∴,∴△ACD∽△ABE,∴,又∵Rt△ABC中,=2,∴=2,即BE=2CD.(2)∵sinB=,∴∠ABC=∠BAC=∠DAE=45°,∵ED⊥AC,∴∠AED=∠BAC=45°,∴AD=DE,AC=BC,將△ADE繞點A旋轉(zhuǎn),∠DEB=90°,分兩種情況:①如圖所示,過A作AF⊥BE于F,則∠F=90°,當∠DEB=90°時,∠ADE=∠DEF=90°,又∵AD=DE,∴四邊形ADEF是正方形,∴AD=AF=EF=2,∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF﹣EF=4,又∵△ABC和△ADE都是直角三角形,且∠BAC=∠EAD=45°,∴∠CAD=∠BAE,∵AC:AB=1:,AD:AE=1:,∴,∴△ACD∽△ABE,∴=,即=,∴CD=2;②如圖所示,過A作AF⊥BE于F,則∠AFE=∠AFB=90°,當∠DEB=90°,∠DEB=∠ADE=90°,又∵AD=ED,∴四邊形ADEF是正方形,∴AD=EF=AF=2,又∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF+EF=8,又∵△ACD∽△ABE,∴=,即=,∴CD=4,綜上所述,線段CD的長為2或4.本題考查三角函數(shù)的定義、特殊角的三角函數(shù)值及相似三角形的判定與性質(zhì),根據(jù)正弦值得出∠ABC的度數(shù)并熟練掌握相似三角形的判定定理解題關(guān)鍵.23、(1)、證明過程見解析;(2)、【解析】試題分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,從而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性質(zhì)可得AE=DE,設(shè)DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根據(jù)相似三角形的對應(yīng)邊成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的長.試題解析:(1)證明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,設(shè)DE=x,∴CE=AC﹣AE=AC﹣DE=1﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(1﹣x):1,解得:x=,∴DE的長是.考點:相似三角形的判定與性質(zhì).24、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作圖見解析;(3)①不正確,理由見解析;②不能,理由見解析.【分析】(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后即可確定其頂點坐標;(2)連接BC,交對稱軸于點P,連接AP、AC.求得C點的坐標后然后確定直線BC的解析式,最后求得其與x=2與直線BC的交點坐標即為點P的坐標;(3)①設(shè)D(t,-t2+4t+1),設(shè)折線D-E-O的長度為L,求得L的最大值后與當點D與Q重合時L=9+2=11<相比較即可得到答案;②假設(shè)四邊形DCEB為平行四邊形,則可得到EF=DF,CF=BF.然后根據(jù)DE∥y軸求得DF,得到DF>EF,這與EF=DF相矛盾,從而否定是平行四邊形.【詳解】解:(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如圖1,連接BC,交對稱軸于點P,連接AP、AC.∵AC長為定值,∴要使△PAC的周長最小,只需PA+PC最小.∵點A關(guān)于對稱軸x=2的對稱點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論