江西省宜春市第九中學2026屆九年級數(shù)學第一學期期末達標測試試題含解析_第1頁
江西省宜春市第九中學2026屆九年級數(shù)學第一學期期末達標測試試題含解析_第2頁
江西省宜春市第九中學2026屆九年級數(shù)學第一學期期末達標測試試題含解析_第3頁
江西省宜春市第九中學2026屆九年級數(shù)學第一學期期末達標測試試題含解析_第4頁
江西省宜春市第九中學2026屆九年級數(shù)學第一學期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省宜春市第九中學2026屆九年級數(shù)學第一學期期末達標測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,等邊三角形ABC的邊長為5,D、E分別是邊AB、AC上的點,將△ADE沿DE折疊,點A恰好落在BC邊上的點F處,若BF=2,則BD的長是()A.2 B.3 C. D.2.下列事件屬于隨機事件的是()A.拋出的籃球會下落B.兩枚骰子向上一面的點數(shù)之和大于1C.買彩票中獎D.口袋中只裝有10個白球,從中摸出一個黑球3.已知:在△ABC中,∠A=78°,AB=4,AC=6,下列陰影部分的三角形與原△ABC不相似的是()A. B.C. D.4.如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點,頂點為D1;將C1繞點A1旋轉180°得到C2,頂點為D2;C1與C2組成一個新的圖象,垂直于y軸的直線l與新圖象交于點P1(x1,y1),P2(x2,y2),與線段D1D2交于點P3(x3,y3),設x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤125.如圖,在△ABC中,點D、E、F分別在邊AB、AC、BC上,且∠AED=∠B,再將下列四個選項中的一個作為條件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.6.下列成語所描述的事件是不可能事件的是()A.日行千里 B.守株待兔 C.水漲船高 D.水中撈月7.二次函數(shù)y=x2+2的對稱軸為()A. B. C. D.8.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.9.圖中三視圖所對應的直觀圖是()A. B. C. D.10.2019年教育部等九部門印發(fā)中小學生減負三十條:嚴控書面作業(yè)總量,初中家庭作業(yè)不超過90分鐘.某初中學校為了盡快落實減負三十條,了解學生做書面家庭作業(yè)的時間,隨機調查了40名同學每天做書面家庭作業(yè)的時間,情況如下表.下列關于40名同學每天做書面家庭作業(yè)的時間說法中,錯誤的是()書面家庭作業(yè)時間(分鐘)708090100110學生人數(shù)(人)472072A.眾數(shù)是90分鐘 B.估計全校每天做書面家庭作業(yè)的平均時間是89分鐘C.中位數(shù)是90分鐘 D.估計全校每天做書面家庭作業(yè)的時間超過90分鐘的有9人二、填空題(每小題3分,共24分)11.如圖是反比例函數(shù)在第二象限內的圖像,若圖中的矩形OABC的面積為2,則k=________.12.如圖,已知⊙O的半徑為10,AB⊥CD,垂足為P,且AB=CD=16,則OP=_____.13.若,則的值是______.14.不等式組的解集是_____________.15.已知:在⊙O中,直徑AB=4,點P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,則弦PQ的長為_____.16.在二次根式中的取值范圍是__________.17.如圖,反比例函數(shù)y=的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內有一點C,滿足AC=BC,當點A運動時,點C始終在函數(shù)y=的圖象上運動,tan∠CAB=2,則k=_____.18.點P是線段AB的黃金分割點(AP>BP),則=________.三、解答題(共66分)19.(10分)已知方程是關于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個根之和等于兩根之積,求的值.20.(6分)如圖,AB是⊙O的直徑,點P是AB上一點,且點P是弦CD的中點.(1)依題意畫出弦CD,并說明畫圖的依據(jù);(不寫畫法,保留畫圖痕跡)(2)若AP=2,CD=8,求⊙O的半徑.21.(6分)如圖,圓內接四邊形ABDC,AB是⊙O的直徑,OD⊥BC于E.(1)求證:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的長.22.(8分)《莊子·天下》:“一尺之棰,日取其半,萬世不竭.”意思是說:一尺長的木棍,每天截掉一半,永遠也截不完.我國智慧的古代人在兩千多年前就有了數(shù)學極限思想,今天我們運用此數(shù)學思想研究下列問題.(規(guī)律探索)(1)如圖1所示的是邊長為1的正方形,將它剪掉一半,則S陰影1=1-=如圖2,在圖1的基礎上,將陰影部分再裁剪掉—半,則S陰影2=1--()2=____;同種操作,如圖3,S陰影3=1--()2-()3=__________;如圖4,S陰影4=1--()2-()3-()4=___________;……若同種地操作n次,則S陰影n=1--()2-()3-…-()n=_________.于是歸納得到:+()2+()3+…+()n=_________.(理論推導)(2)閱讀材料:求1+2+22+23+24+…+22015+22016的值.解:設S=1+2+22+23+24+…+22015+22016,①將①×2得:2S=2+22+23+24+…+22016+22017,②由②-①得:2S—S=22017—1,即=22017-1.即1+2+22+23+24+…+22015+22016=22017-1根據(jù)上述材料,試求出+()2+()3+…+()n的表達式,寫出推導過程.(規(guī)律應用)(3)比較+++……__________1(填“”、“”或“=”)23.(8分)如圖,在中,,分別是,上的點,且,連接,,.(1)求證:四邊形是平行四邊形;(2)若平分,,,,求的長.24.(8分)小丹要測量燈塔市葛西河生態(tài)公園里被湖水隔開的兩個涼亭和之間的距離,她在處測得涼亭在的南偏東方向,她從處出發(fā)向南偏東方向走了米到達處,測得涼亭在的東北方向.(1)求的度數(shù);(2)求兩個涼亭和之間的距離(結果保留根號).25.(10分)關于的一元二次方程有兩個不等實根,.(1)求實數(shù)的取值范圍;(2)若方程兩實根,滿足,求的值。26.(10分)九年級(1)班的小華和小紅兩名學生10次數(shù)學測試成績如下表(表I)所示:小花708090807090801006080小紅908010060908090606090現(xiàn)根據(jù)上表數(shù)據(jù)進行統(tǒng)計得到下表(表Ⅱ):姓名平均成績中位數(shù)眾數(shù)小華80小紅8090(1)填空:根據(jù)表I的數(shù)據(jù)完成表Ⅱ中所缺的數(shù)據(jù);(2)老師計算了小紅的方差請你計算小華的方差并說明哪名學生的成績較為穩(wěn)定.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)折疊得出∠DFE=∠A=60°,AD=DF,AE=EF,設BD=x,AD=DF=5﹣x,求出∠DFB=∠FEC,證△DBF∽△FCE,進而利用相似三角形的性質解答即可.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折疊A落在BC邊上的點F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,設BD=x,AD=DF=5﹣x,CE=y(tǒng),AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴,即,解得:x=,即BD=,故選:C.此題主要考查相似三角形的判定與性質,解題的關鍵是熟知折疊的性質、相似三角形的判定定理.2、C【解析】根據(jù)隨機事件,必然事件,不可能事件概念解題即可.【詳解】解:A.拋出的籃球會下落,是必然事件,所以錯誤,B.兩枚骰子向上一面的點數(shù)之和大于1,是不可能事件,所以錯誤,C.買彩票中獎.是隨機事件,正確,D.口袋中只裝有10個白球,從中摸出一個黑球,,是不可能事件,所以錯誤,故選C.本題考查了隨機事件的概念,屬于簡單題,熟悉概念是解題關鍵.3、C【分析】根據(jù)相似三角形的判定定理對各選項進行逐一判定即可.【詳解】解:A、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形的對應邊不成比例,故兩三角形不相似,故本選項正確.D、兩三角形對應邊成比例且夾角相等,故兩三角形相似,故本選項錯誤;故選:C.本題主要考查了相似三角形的判定,熟知相似三角形的判定定理是解答此題的關鍵.4、D【解析】首先證明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解決問題.【詳解】翻折后的拋物線的解析式為y=(x﹣4)2﹣4=x2﹣8x+12,∵設x1,x2,x3均為正數(shù),∴點P1(x1,y1),P2(x2,y2)在第四象限,根據(jù)對稱性可知:x1+x2=8,∵2≤x3≤4,∴10≤x1+x2+x3≤12,即10≤t≤12,故選D.【點睛】本題考查二次函數(shù)與x軸的交點,二次函數(shù)的性質,拋物線的旋轉等知識,熟練掌握和靈活應用二次函數(shù)的相關性質以及旋轉的性質是解題的關鍵.5、C【解析】試題解析:C.兩組邊對應成比例及其夾角相等,兩三角形相似.必須是夾角,但是不一定等于故選C.點睛:三角形相似的判定方法:兩組角對應相等,兩個三角形相似.兩組邊對應成比例及其夾角相等,兩三角形相似.三邊的比相等,兩三角形相似.6、D【分析】事先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的.【詳解】解:A、日行千里是隨機事件,故本選項錯誤;B、守株待兔是隨機事件,故本選項錯誤;C、水漲船高是必然事件,故本選項錯誤;D、水中撈月是不可能事件,故本選項正確.故選:D.此題考查是不可能事件的判斷,掌握不可能事件的定義是解決此題的關鍵.7、B【分析】根據(jù)二次函數(shù)的性質解答即可.【詳解】二次函數(shù)y=x2+2的對稱軸為直線.故選B.本題考查了二次函數(shù)y=a(x-h)2+k(a,b,c為常數(shù),a≠0)的性質,熟練掌握二次函數(shù)y=a(x-h)2+k的性質是解答本題的關鍵.y=a(x-h)2+k是拋物線的頂點式,a決定拋物線的形狀和開口方向,其頂點是(h,k),對稱軸是x=h.8、B【解析】利用一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程,可求解.【詳解】解:A:,化簡后是:,不符合一元二次方程的定義,所以不是一元二次方程;

B:x2=0,是一元二次方程;

C:x2-2y=1含有兩個未知數(shù),不符合一元二次方程的定義,所以不是一元二次方程;

D:,分母含有未知數(shù),是一元一次方程,所以不是一元二次方程;

故選:B.本題考查了一元二次方程的定義,判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.9、C【分析】試題分析:主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】解:從俯視圖可以看出直觀圖的下面部分為長方體,上面部分為圓柱,且與下面的長方體的頂面的兩邊相切高度相同.只有C滿足這兩點.故選C.考點:由三視圖判斷幾何體.10、D【分析】利用眾數(shù)、中位數(shù)及平均數(shù)的定義分別確定后即可得到本題的正確的選項.【詳解】解:A、書面家庭作業(yè)時間為90分鐘的有20人,最多,故眾數(shù)為90分鐘,正確;B、共40人,中位數(shù)是第20和第21人的平均數(shù),即=90,正確;C、平均時間為:×(70×4+80×7+90×20+100×8+110)=89,正確;D、隨機調查了40名同學中,每天做書面家庭作業(yè)的時間超過90分鐘的有8+1=9人,故估計全校每天做書面家庭作業(yè)的時間超過90分鐘的有9人說法錯誤,故選:D.本題考查了眾數(shù)、中位數(shù)及平均數(shù)的定義,屬于統(tǒng)計基礎題,比較簡單.二、填空題(每小題3分,共24分)11、-1【解析】解:因為反比例函數(shù),且矩形OABC的面積為1,所以|k|=1,即k=±1,又反比例函數(shù)的圖象在第二象限內,k<0,所以k=﹣1.故答案為﹣1.12、6【分析】根據(jù)題意作出合適的輔助線,然后根據(jù)垂徑定理、勾股定理即可求得OP的長,本題得以解決.【詳解】解:作OE⊥AB交AB與點E,作OF⊥CD交CD于點F,連接OB,如圖所示,則AE=BE,CF=DF,∠OFP=∠OEP=∠OEB=90°,又∵圓O的半徑為10,AB⊥CD,垂足為P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四邊形OEPF是矩形,OE==6,同理可得,OF=6,∴EP=6,∴OP=,故答案為:.本題考查垂徑定理、勾股定理,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.13、【分析】根據(jù)合比性質:,可得答案.【詳解】由合比性質,得,故答案為:.本題考查了比例的性質,利用合比性質是解題關鍵.14、【分析】根據(jù)解一元一次不等式組的方法求解即可;【詳解】解:由不等式①得,,由不等式②得,x<4,故不等式組的解集是:;故答案為:.本題主要考查了一元一次不等式組,掌握一元一次不等式是解題的關鍵.15、2或1【分析】當點P和Q在AB的同側,如圖1,連接OP、OQ、PQ,先計算出∠PAQ=30°,根據(jù)圓周角定理得到∠POQ=60°,則可判斷△OPQ為等邊三角形,從而得到PQ=OP=2;當點P和Q在AB的同側,如圖1,連接PQ,先計算出∠PAQ=90°,根據(jù)圓周角定理得到PQ為直徑,從而得到PQ=1.【詳解】解:當點P和Q在AB的同側,如圖1,連接OP、OQ、PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=30°,∴∠POQ=2∠PAQ=2×30°=60°,∴△OPQ為等邊三角形,∴PQ=OP=2;當點P和Q在AB的同側,如圖1,連接PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=90°,∴PQ為直徑,∴PQ=1,綜上所述,PQ的長為2或1.故答案為2或1.本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.16、x<1【解析】試題解析:若二次根式有意義,則<2,解得x<1.故答案為:x<1.本題考查二次根式及分式有意義的條件;用到的知識點為:二次根式有意義,被開方數(shù)為非負數(shù);分式有意義,分母不為2.17、-1【分析】連接OC,過點A作AE⊥x軸于點E,過點C作CF⊥y軸于點F,通過角的計算找出∠AOE=∠COF,結合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根據(jù)相似三角形的性質得出比例式,再由tan∠CAB=2,可得出CF?OF的值,進而得到k的值.【詳解】如圖,連接OC,過點A作AE⊥x軸于點E,過點C作CF⊥y軸于點F.∵由直線AB與反比例函數(shù)y的對稱性可知A、B點關于O點對稱,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE?OE=2,CF?OF=|k|,∴|k|=CF?OF=2AE×2OE=4AE×OE=1,∴k=±1.∵點C在第二象限,∴k=﹣1.故答案為:﹣1.本題考查了反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的性質以及相似三角形的判定及性質,解答本題的關鍵是求出CF?OF=1.解答該題型題目時,巧妙的利用了相似三角形的性質找出對應邊的比例,再結合反比例函數(shù)圖象上點的坐標特征找出結論.18、.【解析】解:∵點P是線段AB的黃金分割點(AP>BP),∴=.故答案為.點睛:本題考查了黃金分割的定義,牢記黃金分割比是解題的關鍵.三、解答題(共66分)19、(1)詳見解析;(2)1.【分析】(1)根據(jù)一元二次方程根的判別式,即可得到結論;(2)由一元二次方程根與系數(shù)的關系,得,,進而得到關于m的方程,即可求解.【詳解】(1)∵方程是關于的一元二次方程,∴,∵,∴方程總有兩個實根;(2)設方程的兩根為,,則,根據(jù)題意得:,解得:,(舍去),∴的值為1.本題主要考查一元二次方程根的判別式以及根與系數(shù)的關系,掌握一元二次方程根的判別式以及根與系數(shù)的關系是解題的關鍵.20、(1)畫圖見解析,依據(jù):平分弦(非直徑)的直徑垂直于弦;(2)⊙O的半徑為1.【分析】(1)過P點作AB的垂線即可,作圖依據(jù)是垂徑定理的推論.(2)設⊙O的半徑為r,在Rt△OPD中,利用勾股定理構建方程即可解決問題.【詳解】(1)過P點作AB的垂線交圓與C、D兩點,CD就是所求的弦,如圖.依據(jù):平分弦(非直徑)的直徑垂直于弦;(2)如圖,連接OD,∵OA⊥CD于點P,AB是⊙O的直徑,∴∠OPD=90°,PD=CD,∵CD=8,∴PD=2.設⊙O的半徑為r,則OD=r,OP=OA﹣AP=r﹣2,在Rt△ODP中,∠OPD=90°,∴OD2=OP2+PD2,即r2=(r﹣2)2+22,解得r=1,即⊙O的半徑為1.本題主要考查了垂徑定理,勾股定理等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題.21、(1)詳見解析;(1)1.【分析】(1)根據(jù)OD⊥BC于E可知,所以BD=CD,故可得出結論;(1)先根據(jù)圓周角定理得出∠ACB=90°,再OD⊥BC于E可知OD∥AC,由于點O是AB的中點,所以OE是△ABC的中位線,故,在Rt△OBE中根據(jù)勾股定理可求出OB的長,故可得出DE的長,進而得出結論.【詳解】解:(1)∵OD⊥BC于E,∴,∴BD=CD,

∴∠BCD=∠CBD;(1)∵AB是⊙O的直徑,

∴∠ACB=90°,

∵OD⊥BC于E,

∴OD∥AC,

∵點O是AB的中點,

∴OE是△ABC的中位線,在Rt△OBE中,

∵BE=4,OE=3,,即OD=OB=5,

∴DE=OD-OE=5-3=1.22、(1);;;()n;1-()n;(2)+()2+()3+…+()n=1-()n,推導過程見解析;(3)=【分析】(1)根據(jù)有理數(shù)的混合運算計算前幾項結果,并觀察得出規(guī)律即可得解

(2)根據(jù)材料中的計算求和的方法即可求解;

(3)根據(jù)(2)的化簡結果,結合極限思想即可比較大小.【詳解】解:(1)S陰影2=1--()2=1-==,S陰影3=1--()2-()3=1-==,S陰影4=1--()2-()3-()4==,?S陰影n=1--()2-()3-…-()n=()n,于是歸納得到:+()2+()3+…+()n=1-()n故答案為:;;;()n;1-()n(2)解:設S=+()2+()3+…+()n,①將①×得:S=()2+()3+)4…+()n+()n+1,②①-②得:S=-()n+1,③將③×2得:S=1-()n即得+()2+()3+…+()n=1-()n(3)=,理由如下:∵+++……=1-()n,當n越來越大時,()n越來越小,越來越接近零,由極限的思想可知:當n趨于無窮時,()n就等于0,故1-()n就等于1,故答案為:=本題考查了數(shù)字的變化類、有理數(shù)的混合運算,解決的本題的關鍵是尋找規(guī)律并利用規(guī)律.23、(1)見解析;(2).【分析】(1)根據(jù)平行四邊形的性質得到∠A=∠C,AD=CB,根據(jù)全等三角形的性質和平行四邊形的判定定理即可得到結論;(2)根據(jù)平行線的性質和角平分線的定義得到∠DAF=∠AFD,求得AD=DF,根據(jù)勾股定理的逆定理和勾股定理即可得到結論.【詳解】(1)證明:∵四邊形是平行四邊形,∴且.∵,∴,即,∴四邊形是平行四邊形.(2)解:∵,∴.∵平分,∴,∴,∴.∵四邊形是平行四邊形,∴,,∴.∵,,∴,∴.∵,∴,∴.本題考查了全等三角形的判定和性質,平行四邊形的性質和判定,勾股定理,矩形的性質和判定的應用,能綜合運用知識點進行推理是解此題的關鍵.24、(1)60°;(2)米.【解析】(1)根據(jù)方位角的概念得出相應角的角度,再利用平行線的性質和三角形內角和進行計算即可求得答案;(2)作CD⊥AB于點D,得到兩個直角三角形,再根據(jù)三角函數(shù)的定義和特殊角的三角函數(shù)值可求得AD、BD的長,相加即可求得A、B的距離.【詳解】解:(1)由題意可得:∠MAB=75°,∠MAC=30°,∠NCB=45°,AM∥CN,∴∠BAC=75°?30°=45°,∠MAC=∠NAC=30°∴∠ACB=30°+45°=75°,∴∠ABC=180°?∠BAC?∠ACB=60°;(2)如圖,作CD⊥AB于點D,在Rt△ACD中,AD=CD=AC?sin45°=300×=150,在Rt△BCD中,BD=CDtan30°=150×=50,∴AB=AD+BD=150+50,答:兩個涼亭A,B之間的距離為(150+50)米.本題考查了解直角三角形的應用,在解決有關方位角的問題時,一般根據(jù)題意理清圖形中各角的關系,有時所給的方位角不在三角形中,需要通

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論