




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Mcsey
&company
People&OrganizationalPerformancePractice
Theagenticorganization:
Contoursofthenext
paradigmfortheAIera
Companiesaremovingtowardanewparadigmofhumansworkingtogether
withvirtualandphysicalAIagentstocreatevalue.Wesharelessonsfrom
earlyadopters—andwhatyoucandonext.
ThisarticleisacollaborativeeffortbyAlexanderSukharevsky,AlexisKrivkovich,ArneGast,ArsenStorozhev,
DanaMaor,DeepakMahadevan,LariH?m?l?inen,andSandraDurth,representingviewsfromMcKinsey’s
People&OrganizationalPerformancePractice,McKinseyTechnology,andQuantumBlack,AIbyMcKinsey.
September2025
AIisbringingthelargestorganizationalparadigmshiftsincetheindustrialanddigitalrevolutions(seesidebar,“Theevolutionofoperatingmodels”).Thisnewparadigmuniteshumansand
AI
agents
—bothvirtualandphysical—toworksidebysideatscaleatnear-zeromarginalcost.Wecallittheagenticorganization.
McKinsey’sexperienceworkingwithearlyadoptersindicatesthatAIagentscanunlock
significantvalue
.Organizationsarebeginningtodeployvirtual
AIagents
alongaspectrumof
increasingcomplexity:fromsimpletoolsthataugmentexistingactivitiestoend-to-endworkflowautomationtoentire“AI-first”agenticsystems.Inparallel,physicalAIagentsareemerging.
Companiesaremakingstridesindeveloping“bodies”forAI,suchassmartdevices,drones,self-drivingvehicles,andearlyattemptsat
humanoidrobots
.ThesemachinesallowAItointerface
withthephysicalworld.
Theevolutionofoperatingmodels
Intheagriculturalerapriortothe
1800s,operatingmodelsweresimpleandcenteredaroundsmallteamsof
craftspeopleandfarmers.Eightyto
90percentoftheglobalpopulationworkedinagriculture.1
Next,intheindustrialera,peoplemoved
intofactories,andoperatingmodels
shiftedtofunctionalhierarchies.Productsweredesignedformassreplication
bypeopleandmachines,withmajor
upgradeseverythreetotenyears.New
rolesemerged,suchasfactoryworkers,engineers,andshiftsupervisors.By
the1970s,39percentofpeopleinthe
UnitedStatesworkedintheindustrial
sector,withjust4percentinagriculture.2Efficientscalingdrovecompanies’growthandcompetitiveadvantage,and
lean
management
becameastrategictool.
Asthedigitaleralaunchedinthe1990s,industrial-agemaximsbegancrumblingwiththeriseofcomputing.EarlyITefforts
mirroredindustrialthinking,hard-codingbusinessprocessesintomonolithic
systemssupportingproductionand
enterpriseresourceplanning
.Companiessoonshiftedtomodulardigital
products
andplatforms
,updatedmonthlyorevendaily.3Speedrequired
agileoperating
models
withsmall,cross-functionalteams,includingnewrolessuchassoftware
engineers,experiencedesigners,and
productmanagers.Speedandcustomer
accessbecamethekeystocompanies’
competitiveadvantage.Today,5.8percentoftheUSpopulationisemployedintech
jobs,4withonly1.6percentinagriculture5and19.3percentintheindustrialsector.6
Now,theAIeraisbeginningtousherinthenewestevolution,revolutionizing
knowledgeworklikethepreviouserasrevolutionizedphysicalwork,withthe
agenticorganizationbringingtogetherhumans,AIagents,andmachinesintheworkplaceofthefuture.
Thepromiseofthisnewparadigmwill
dependuponthecontinuedgrowthof
AI’scapabilities,aswellasotherfactors
suchasregulation.Thelengthoftasks
thatAIcanreliablycompletedoubled
approximatelyeverysevenmonthssince2019andeveryfourmonthssince2024,reachingroughlytwohoursasofthis
writing.7AIsystemscouldpotentially
completefourdaysofworkwithout
supervisionby2027.Thiswouldbea
phenomenallyacceleratedevolution—
fromanintern-levelemployeerequiring
constantsupervisiontoamid-tenure
employeewhocanoperateindependentlyto,perhaps,aseniorexecutivewhocan
shapeanddrivestrategies.
Organizationalparadigmsdocoexist.Buttheagenticorganizationmayofferthe
keyfortheleaderstogainacompetitiveadvantagebybuildingdecentralized
outcomes-focusedagenticnetworks.
1MarianL.TupyandRonaldBailey,“Thechangingnatureofwork,”HumanProgress,March1,2023.
2VictorR.Fuchs,Economicgrowthandtheriseofserviceemployment,NationalBureauofEconomicResearchworkingpaper,number486,June1980.
3EikiTakeuchi,“WhyAmazonreleasesevery11.6seconds,”Medium,May11,2025.
4Stateofthetechworkforce2025,CompTIA,July1,2025.
5Data360Database,“Employmentbysector(%),”WorldBank,accessedAugust2025.
6Data360Database,“Employmentbysector(%),”WorldBank,accessedAugust2025.
7“MeasuringAIabilitytocompletelongtasks,”METR,accessedSeptember2025.
Theagenticorganization:ContoursofthenextparadigmfortheAIera2
Theagenticorganization:ContoursofthenextparadigmfortheAIera3
Theagenticorganizationwillbebuiltaroundfivepillarsoftheenterprise:businessmodel;
operatingmodel;governance;workforce,people,andculture;andtechnologyanddata
(Exhibit1).Imagine,forinstance,thebankoftomorrow:Whenacustomerwantstobuyahouse,
apersonalAIconciergeactivatesaseriesofagenticworkflowstoservethebuyer.Arealestate
AIagentsuggestsproperties,whileamortgageunderwritingagenttailorsoffersbasedonthe
customer’sfinancialprofile.Complianceagentsensurethatthedealadherestobankpolicies,
andacontractingagentfinalizesagreementsbeforeanotheragentfulfillstheloan.Alltheseworkflowsareoverseenbyanagenticteamofhumansupervisors,mortgageexperts,and
AI-empoweredfrontlineemployees.Insomecases,thebankcouldevenextenditsAI-powered
servicesintofurnishing,renovations,energyupgrades,andmore.Thebankbecomesanetwork
ofagenticteams—anagenticorganization.
Exhibit1
AIisleadingthelargestorganizationalparadigmshiftsincetheIndustrialandDigitalRevolutions.Coreelementsoforganizationalparadigms,byera
Dominantperiod
Era
III
18002000
Craftandagriculture
III
18002000
Industrial
1800200018002000
Digital
AI
Businessmodel
Agriculturalandartisanprod-uctsviadirectchannels,eg,localbread,tailoredclothes
Centuriestochangestandarddesigns
Humancreationanddelivery
Manufacturedgoodsviaphysicalchannels,eg,cars,washing
machines,mass-marketsoap
3–10yearsbetweenmajorupgrades
Linear,repeatablebusinessprocesses
Digitalchannelsandproducts,eg,e-commerceplatforms,
bankingapps,socialmedia,softwareasaservice(SaaS)
Dailyormonthlyproductreleases
Digitaljourneyswithanalytics
AI-nativechannelsandproducts,eg,personalconcierges
Real-timepersonalizationandinnovation
AI-?rstworklowsfueledbyproprietarymultimodaldata
Operatingmodel
Teamsoffarmworkersor
skilledindividuals(artisans),withknowledgetransferfrommastertoapprentice
Functionalhierarchieswithlargefrontlineforrepetitivetasks,
smallwhite-collarteamsfor
managementandengineering
Cross-functionalteamsofknowl-edgeworkersalignedtoprod-
ucts,projects,andsegments,withdigitallyenabledfrontline
Flatnetworksofhybridagentic
teamsstructuredtodriveend-to-endoutcomes
Governance
Localplanninganddirectgovernance
Rigidplans,waterfalldelivery,andmanualgovernance
Iterativeproductdelivery,
quarterlyrealignment,andagilegovernance
Real-time,embeddedgovernanceandagenticcontrolswithhumanaccountability
Workforce,
people,andculture
Deepspecializationandcul-tureofcraftsmanship
Narrowlyspecializedfunctionaltalentworkinginacultureof
planning
KnowledgeworkerswithT-shapedtalentpro?lesworkinginacultureof
experimentation
HybridworkforcewithT-shapedandM-shapedhumantalentpro?les
Cultureofcontinuouschangeandlearning
Technologyanddata
Handtoolsandanimalstohelphumans
Handwrittennotebooksandledgers
Machinesandharnessedenergy
IT“monoliths”(eg,enterprise
resourceplanning,mainframes)ownedby(outsourced)ITdepart-mentswithmanualsoftware
delivery
Gigabytesofstructuredopera-tionaland?nancialdataindatawarehouses
PC,mobile,cloud,industrialrobots,etc
Modularsystems,(micro-)
servicesandAPIsownedby(in-house)cross-functionalteamswithsemiautomateddelivery
Tera/petabytesofsemistruc-
tureddataforadvancedanalyticsindatalakes
Sensors,humanoidrobots,drones,etc
DemocratizedAImeshwithmodularAIagents,agent-to-agentcommuni-cation,anddynamicsourcing
Peta/exabytesofunstructuredmultimodaltacitdata
Iconic
examples
Bread,artisanclothesandshoes,art
Ford,GE,Toyota
Google,Spotify,Facebook
Leadershipintheerastillopen
McKinsey&Company
Theagenticorganization:ContoursofthenextparadigmfortheAIera4
Inthisarticle,weshareearlysignalsfromourworkwithpioneeringcompanies,insightsfrom
techleadersandinvestors,andthequestionsexecutivesareaskingus.Theagenticorganizationparadigmwillundoubtedlyevolve,buttoday’sleaderscannotwaitforperfectclarity.Inthis
article,wepointleaderstowheretheycanactnowtoshapethenewera—refiningtheir
operating
modelstocreatemorevalue
and
rewiring
foranAI-firstapproach—insteadofwaitingtobe
shapedbyit.
Fivepillarsoftheagenticorganization
1.Businessmodel
Intheagenticera,companieswillgainacompetitiveadvantagebygettingclosertocustomersviaAIchannelstoofferreal-timehyperpersonalization,streamliningprocessestobecome
AI-first,andbuildingawalledgardenofproprietarydataastheirsuperpower.AI-nativestart-upsandagenticcompaniescanpotentiallydisruptindustries,withafundamentallydifferentlevelofproductivity(revenueperemployee),costdecoupledfromgrowth,andgreaterspeedtomarketandinnovation.
AI-nativechannelsenablehyperpersonalization
Consumersarealreadybypassingshops,apps,andsearchenginesinfavorofAI-native
interfacessuchasChatGPT.Inthefuture,everyconsumercouldhavea
low-costAIpersonal
assistant
.One
Europeanutilityprovider
hasrolledoutamultimodalAIassistanttoitsthree
millioncustomers.Itsignificantlyreducedaveragehandlingtimes,boostedcustomer
satisfaction,improvedresponsespeed,andresolvedmorecallswithoutahuman.These
assistantswon’tjustrespond;theyarepersonalconciergesthatwillnegotiatewithotheragents24/7,continuouslylearningfromuserbehaviorandmarketsignalstogenerateever-evolving,
hyperpersonalizedproducts.Thisalsounlocksnewopportunitiesforthe
ecosystemeconomy
,inwhichcompaniesthatowncustomercontactcangrowby
meetingvariouscustomerneeds
beyondtheirtraditionalbusinessmodelandindustryboundaries.
AI-firstworkflowsdrivemarginalcoststowardthecostofcompute
Banksalreadyrunmortgageandcomplianceprocesseswithagentsquads.
Insurers
are
reinventingclaimsandunderwriting,whilereimaginingthemselvesasAI-native.Telcosareusingagentsin
customerserviceandbeyond
.Oneglobalbank’s“agentfactory”manages
know-your-
customerprocesses
withtenagentsquads,whichhashelpedachieveasubstantialpositive
impactonthequalityandconsistencyofoutput.
Anotherbank
hasusedhumanstooversee
squadsofAIagentsinmodernizingitslegacycoresystems,enablingupto50percentreductionsintimeandeffort.Thisisnotautomationasusualontopofexistingprocesses—it’saredesign
ofend-to-endprocesseswithhumans“abovetheloop”forstrategicoversight,withpotentialto
bringthemarginalcosttowardthecostofcompute.Goingforward,most,ifnotall,processescanbereimaginedasAI-first,withhumansandtraditionalITsystemsselectivelyintroducedbackin
thelooporabovetheloop.
Proprietarydatabecomesakeydifferentiator
Iftoday’sAIis“aninternwiththeinternetinitspocket,”tomorrow’sedgewillcomefromthe
walleddatagardensthatthepublicinternetdoesn’toffer.Companiescanoutperformtheir
competitionbycontinuouslycapturingandrefiningunique,consented,proprietarydata—suchasstreamsofcustomerbehavior,productusage,andsensordata—andconvertingtheminto
differentiatingpersonalizedproductsandprocesses.AIcanalsohelpbyacceleratingthe
build-
upofdatafoundationsanddataproducts
,aswellasdata-qualityimprovements.
Theagenticorganization:ContoursofthenextparadigmfortheAIera5
2.Operatingmodel
Intheagenticera,howorganizationsarebuiltandoperatewillevolveasmuchastheproductsorservicestheydeliver.WorkandworkflowswillbereimaginedasAI-first,andoperatingmodels
willevolvetoflatnetworksofempowered,outcome-alignedagenticteams.
WorkandworkflowswillbereimaginedasAI-first
TheoperatingmodeloftheagenticerawillbeanchoredaroundreimaginedAI-firstworkflows,withhumansandITsystemsselectivelyreintroducedinAI-nativedesign.AtaEuropean
automakerandapublicsectororganization,squadsofagentsarereverse-engineeringand
modernizinglegacysystemswhilehumanssteerandvalidatework.Inproductdevelopment,
agentscangatherfeedback,analyzedata,testfeatures,andevenruncampaigns.Humanswillbemostlypositionedabovethelooptosteeranddirectoutcomesandselectivelywithintheloopwherehumancontactmatters.
Outcome-alignedagenticteamswillbeorganizationalbuildingblocks
Traditionalorganizationshavebeenbuiltaroundfunctionalsilos.Digitalcompanieshavecross-functionalproductteamsbutarestillconstrainedbyhandoversandhumanteamsizelimitations,suchasthetwo-pizzateam1andDunbar’snumber.2
Intheagenticorganization,structurewillpivottosmall,outcome-focusedagenticteams.
Anagenticteam—asmallergroupofmultidisciplinaryhumanswhoownandsupervisethe
underlyingAIworkflows—canbeorganizedtodeliverclearend-to-endbusinessoutcomes
coveringthefullfunctionalvaluechainofmarketing,productmanagement,technology,data,andoperations.Inourexperience,ahumanteamoftwotofivepeoplecanalreadysuperviseanagentfactoryof50to100specializedagentsrunninganend-to-endprocesssuchasonboarding
acustomer,launchingaproduct,orclosingthebooks.AgenticAIcanextendthescopeandautonomyofaproductteammorethanever.
Winnersorchestrateflatnetworksofagenticteams
ProliferationofAIagentswithouttherightcontext,steering,andorientationcanbearecipeforchaos.Winningoperatingmodelsofthefuturewillempoweragenticteams,withflatdecision
andcommunicationstructuresthatoperatewithhighcontextsharingandalignmentacross
agenticteamstoensuretheymoveinsync.Organizationcharts(basedontraditionalhierarchicaldelegation)willpivottowardagenticnetworksorworkcharts(basedonexchangingtasksand
outcomes).3Finally,agenticnetworksarenotnecessarilylimitedtotheboundariesofasingleorganization,anddifferentoutcomesmaybesourcedfromdifferentparties,openingupnewB2Bopportunities.
3.Governance
Intheagenticorganization,governancecannotremainaperiodic,paper-heavyexercise.As
agentsoperatecontinuously,governancemustbecomerealtime,datadriven,andembedded—withhumansholdingfinalaccountability.
Decision-makingaccelerateswithreal-timedata
Traditionalbudgeting,planning,andperformancemanagementcyclesaretooslowforAI-first
workflows.Earlymoversareexperimentingwith“agenticbudgeting,”inwhichAIagentsproposebudgets,scenarioagentsrunforecasts,andreportingagentsprovidereal-timeinsights.Finance
1MartinFowler,“Twopizzateam,”MartinF,July25,2023.
2“Dunbar’snumber,psychologicalsafetyandteamsize,”PsychSafety,October21,2022.32025:Theyearthefrontierfirmisborn,Microsoft,April23,2025.
Theagenticorganization:ContoursofthenextparadigmfortheAIera6
leadersshiftfromcollectingspreadsheetstointerpretingsignals,stress-testingscenarios,andengagingdirectlywiththebusiness.
Agentscontrolagentsthroughembeddedguardrails
JustasDevSecOps(development,security,andoperations)embeddedautomatedchecksintodigitaldelivery,agenticorganizationswillembedcontrolagentsintoworkflows.Criticagents
willchallengeoutputs,guardrailagentswillenforcepolicy,andcomplianceagentswillmonitorregulation.Everyactioncanbeloggedandexplainedinrealtime—fromdataprivacytofinancialthresholdstobrandvoice.AnAIgovernanceframeworkacrossthelifecycleofAIagents—fromagentdiscoveryandinitiationtodecommissioning—canbalancespeedandscalewiththe
requiredsecurityandcontrolmechanisms.
Humanaccountabilityandoversightremain
Humanaccountabilityandoversightwillremainessential,buttheirnaturewillchange.Ratherthanconductline-by-linereviews,complianceofficersandleaderswilldefinepolicies,monitoroutliers,andadjustthelevelofhumaninvolvement.Thechallengeisfindingthesweetspot:
enoughoversighttomanageriskwithoutpullingagentsbacktohumanspeed.Companies
thatgetthisbalancerightwillcapturemoreoftheagenticadvantage.Ultimately,thescaleof
agenticadoptionwillbecappedbyhowmuchoversightcapacityhumanscanprovide—makinggovernanceitselfapotentialbottlenecktoproductivity.
4.Workforce,people,andculture
Intheagenticorganization,humanswillmovefromexecutingactivitiestoowningandsteeringend-to-endoutcomes.Thatshiftdemandsnewprofileswithdifferentskillsandaculturethatprovidescohesionandpurpose.
Thehybridagenticworkforceneedsanewtalentsystem
Asagentstakeonexecution,peoplewillincreasinglydefinegoals,maketrade-offs,andsteeroutcomes.Thiswillchangehowcompaniesplanforahybridworkforce,whomtheyhire(or
borrow),howtheydeployhumanorAItalent,andhowtheymeasuresuccess.HRsystemsnotonlytrackhumanemployeesbutalsoarearepositoryofagentsandagenticworkflows.
Performancemanagementanchoredintaskcompletionwillgivewaytosystemsthattrackhowwellpeopleorchestrateagents,unlockvalue,anddeliveroutcomes.Inthisnewparadigm,thetalentsystemitselfmustberethought—fromcareerpathstoincentivestoleadershipmodels.
Newtalentprofileswithdifferentskillsemerge
Inourworkwithpioneeringorganizations,weseeAIagentsreplacingtaskshistoricallyhandledbyknowledgeworkers,suchasanalyzingdocumentsandcreatingAPIs.Atthesametime,we
seerisingdemandforotherskills—forexample,deepproblem-solvingwithanend-to-endlens,applicationofsystemdesign,andtheabilitytoapplypatternrecognitiontoedgecaseswhereagentsfail.
Threerolesareemergingashumansworkalongsideagents(Exhibit2):
—M-shapedsupervisors:broadgeneralistsfluentinAI,orchestratingagentsandthehybridworkforceacrossdomains
—T-shapedexperts:deepspecialistswhoreimagineworkflows,handleexceptions,andsafeguardquality
Theagenticorganization:ContoursofthenextparadigmfortheAIera7
Exhibit2
Newtalentpro?lesforsupervisors,specialists,andfrontlineworkerswillemergeintheagenticorganization.
SkillsrequiredforevolvingrolesintheAIera
M-shapedgeneralmanager
Builds,supervises,andoptimizeshybridworklows;hasend-to-endproductorprocessresponsibility
Highercognitive1
AI
Socioemotional
DomainDomain
Multiskilledwithabilitytoapplyknowledgeacrossdomains
T-shapeddeepspecialist
Provideshumanoversightofwork-lows;hasextensivesubjectmatterexpertise
Highercognitive
AI
Domain
Deepknowledgeinaspeci?c
domain
AI-empoweredfrontlineworkerFocusesoninterpersonaltasks
wherehumantouchisrequiredforoptimaloutcomes
Socioemotional
AI
DomainHigher
cognitive
Highsocioemotionalskillswith
basicAIluency
Gapsmeasuredagainstrolestoday
Howdoesitcomparetotoday’smanagerrole?
Needsnovelskillmix,particularlyinintegrativeend-to-end
thinkingandabilitytomanageAI-?rstworklows
Howdoesitcompareto
today’sspecialistrole?
Augmentscurrentexpertise-basedroleswithabilityto
teachand?ne-tuneagentic
systemsandhandleexceptioncasesandagenticlearning
Howdoesitcompareto
today’sfrontlinerole?
Enhancesexistingfrontlineroles—selectedfortheir
socioemotionalskills—byaddingAIcapabilities
1Forexample,criticalthinking,problem-solving,creativity,decision-making,abstractthinking.
McKinsey&Company
—AI-augmentedfrontlineworkers:employeesinsales,service,HR,oroperationswhospendlesstimeonsystemsandmoretimewithhumans
Leadersthemselveswillalsoevolve.CEOs,productofficers,andcomplianceheadswill
increasinglyneedthetechnologyfluencyonceexpectedonlyofchiefinformationofficers.Fillingtheseroleswillrequire
upskillingandreskillingatscale
.Earlyevidenceshowsthatemployees
withouttechnicalbackgroundscanlearntomanageagenticworkflowsasquicklyastrained
engineers.Careerpathsandperformancesystemswillneedtoadaptas“boxesandlines”givewaytoecosystemsofhumananddigitalskills.Astheseprofilestakehold,theconstructsof
“organization”and“employee”willbecomemorefluid,withecosystemsofhumananddigitaltalentblendinginsideandoutsideanorganization.
Cultureactsasglueandethicalcompass
Culturewillbecomeboththeoperatingglueandtheethicalcompassoftheagenticorganization.Pioneeringagenticorganizationshighlighttheneedfororchestration—toalignteamsaround
sharedcontextandoutcomes,identifytherightmixofhumanandAIcapabilities(asnot
everythingneedsagenticAI),andbuildtrustbetweenhumansandagents.Theculturecompassembedsvaluesandlong-termpurposeintoagenticsystems,socompaniesdon’tchaseshort-
Theagenticorganization:ContoursofthenextparadigmfortheAIera8
termefficiencyattheexpenseofcohesionandtrust.Earlypioneersshowthatclarity,decisive
leadership,andcontinuouslearningarecritical—butwhatwilldifferentiatewinnersistheirabilitytopreservecohesionandidentitywhiletransformingatpace.
5.Technologyanddata
Intheagenticorganization,technologyanddatawillgetdemocratized,supportedbyan
agentic
AImesh
.Agent-to-agentprotocolswillmakeintegrationacrosssystems,machines,andhumanseasierandcheaper.Successfulscalerswillbalancebuild-versus-buydecisionsbasedon
sourcesofdistinctivenessandcompetitiveadvantage,avoidingtechnologyorvendorlock-insotheycanadaptquicklytoafast-evolvingofferinglandscape.
DistributedownershipofITanddatabecomesfeasible
Inthedigitalera,technologyanddatasystemsevolvedfromcentralizedmonolithsand
databasessittingfarfromthebusinesstoward
microservices
and
dataproducts
sittingclose
tothebusiness.Thisrequiredsignificantsoftwareanddataengineeringexpertisetodesign,
develop,andmaintaintheunderlyingtechnologyanddata.Intheemergingagenticage,
business-sideemployeeswillbeabletoindependentlycreatesoftwareassetsandmanagedatathroughagenticAI,whichautomatesthesoftwaredevelopmentlifecycle(SDLC)withoversightfromdeepspecialists.Earlyadoptershaveseenproductivityatleastdouble,withemployees
fromdiversebackgrounds—suchasaFrenchliteraturegraduateinoneofourteams—provingascapableassoftwareengineersinbuildingagenticworkflows.
Toscalethistransformationresponsibly,organizationsmustadoptagenticplatformsand
architectures,suchasanagentic
AImesh
.Theseplatformsprovidereusable,high-performing
“atomic”agentsanddataproductsequippedwithtechnicalsafetyguardrailstopreventbuildupof
technicaldebt
orcybersecurityrisks,whileunlockingunprecedentedlevelsofdemocratizationandinnovation.
Agent-to-agentprotocolseaseinteractionsandintegrations
Agent-to-agentprotocolsareredefininginteractionsbetweenhumans,agents,ITsystems,anddevices.RatherthanrelyingontraditionalITsystemintegrationssuchasmiddlewareand
APIs
thatrequireheavyprogrammingandcustomsystem-to-systemconnections,agent-to-agent
protocolsenablesystemstouseagentstocommunicatewithothersystems.Bymovingtoagent-to-agentdialoguethatsitsabovetheunderlyingsystemcomplexity,organizationscanintegratelegacysystems,cloudplatforms,andevenmachinessuchasdronesintocohesiveworkflows
morequicklyandatlowercost.Moreimportant,thisallowsforfasterexperimentation—inwhichnewcapabilitiescanbetested,scaled,ordeprecatedwithoutmonthsofengineeringeffort.
Dynamicsourcingbecomescritical
Manybusiness-criticalplatformswerehistoricallybuiltin-houseorselectedinrigoroussourcingprocesses,withmultiyearimplementationtransformations.Thesesystemswereintendedto
remainlargelystabletosecurecompetitivenessfordecades.Amuchmoreflexiblestrategywillbeneededintheagenticage.LargelanguagemodelsandAIproductsareevolvingsofastthatlockinginonesolutionorvendorcanleadtotechnologythatisoutdatedinamatterofweeks.Atthesametime,organizationswillneedtowallinproprietaryorganizationalcontext,institutionalknowledge,andnonpublicdataforcompetitiveness.Thisrequiresarchitecturethatseparates
theagenticstructure,logic,anddatafromtheunderlyingvendorlandscape.
Theagenticorganization:ContoursofthenextparadigmfortheAIera9
Howtostartthejourney
Themostfrequentquestionweheardinourdiscussionswithexecutiveswas,“HowdoIstart?”ExecutiveswonderhowtocreateaNorthStarvisionwithoutclarityonwhatthefutureholds;
howtoassessmaturityandupgradeneedsfordata,technical,andgovernancefoundations;howtosetprioritiesforvalueandfeasibility;howtobringtheorganizationalongintermsof
skillsandmindset;andhowtoscalefasterthanrivalstocreateacompetitiveadvantage.The
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)服務(wù)信息安全守秘保障承諾書5篇范文
- 2025年寧波前灣新區(qū)衛(wèi)生系統(tǒng)事業(yè)單位招聘高層次人才11人考前自測高頻考點模擬試題及答案詳解(新)
- 2025年南安市部分公辦學(xué)校專項招聘編制內(nèi)新任教師(二)考前自測高頻考點模擬試題附答案詳解(突破訓(xùn)練)
- 2025年甘肅省特種設(shè)備檢驗檢測研究院聘用人員招聘考前自測高頻考點模擬試題及答案詳解(奪冠)
- 2025廣西河池市大化瑤族自治縣特殊教育學(xué)校招聘公益性崗位工作人員2人模擬試卷及答案詳解(易錯題)
- 2025北京郵電大學(xué)人工智能學(xué)院招聘1人(人才派遣)模擬試卷附答案詳解(黃金題型)
- 項目風(fēng)險管理模板覆蓋多行業(yè)
- 2025北京大學(xué)地球與空間科學(xué)學(xué)院智慧能源和公共安全研究中心招聘科研助理1人模擬試卷附答案詳解(完整版)
- 湖南省部分市縣2024-2025學(xué)年高一下學(xué)期期末聯(lián)考地理試題(解析版)
- 2025北京平谷區(qū)衛(wèi)生健康委員會所屬事業(yè)單位第二次招聘211人模擬試卷及1套完整答案詳解
- 2025年10月10日江蘇省稅務(wù)遴選筆試真題及答案解析
- 礦山道路土路施工方案
- 麗水2025年麗水市生產(chǎn)力和投資促進(jìn)中心招聘4人筆試歷年參考題庫附帶答案詳解
- 2025-2026學(xué)年 小學(xué)數(shù)學(xué)二年級上冊 第一次月考(一、二)(含答案)(人教版)
- 汽車展示大廳設(shè)計方案
- HAZOP分析法在綠氫制氫站工藝風(fēng)險評估中的應(yīng)用探索
- 2025年云南省勞動合同書版
- 吊繩外墻施工方案
- 2025廣西公需科目考試題庫和答案(覆蓋99%考題)廣西一區(qū)兩地一園一通道+人工智能時代的機(jī)遇
- 2025年全國中小學(xué)校黨組織書記網(wǎng)絡(luò)培訓(xùn)示范班在線考試題庫及答案
- 學(xué)習(xí)領(lǐng)域六 城軌車輛連接裝置
評論
0/150
提交評論