




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.如圖,在平面直角坐標(biāo)系中,,CD//x軸,CD=AB.(1)求點(diǎn)D的坐標(biāo):(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點(diǎn)P,使△PAB=四邊形OCDB;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.2.如圖1,//,點(diǎn)、分別在、上,點(diǎn)在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點(diǎn)、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點(diǎn)、,且,直接寫出的值.3.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說明理由,若不變化,求出么的度數(shù).4.汛期即將來(lái)臨,防汛指揮部在某水域一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,若兩燈射出的光束交于點(diǎn),過作交于點(diǎn),若,求的度數(shù);(3)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射出的光束才開始轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?5.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點(diǎn)在的上方,問,,之間有何數(shù)量關(guān)系?請(qǐng)說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).6.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.7.閱讀型綜合題對(duì)于實(shí)數(shù)我們定義一種新運(yùn)算(其中均為非零常數(shù)),等式右邊是通常的四則運(yùn)算,由這種運(yùn)算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個(gè)數(shù)對(duì).若實(shí)數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時(shí)的叫做正格線性數(shù)的正格數(shù)對(duì).(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對(duì)?若有,請(qǐng)找出;若沒有,請(qǐng)說明理由.8.對(duì)數(shù)運(yùn)算是高中常用的一種重要運(yùn)算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對(duì)數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對(duì)數(shù)叫做常用對(duì)數(shù),此時(shí)log10N可記為lgN.當(dāng)a>0,且a≠1,M>0,N>0時(shí),loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計(jì)算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)9.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據(jù)以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據(jù)以上規(guī)律求1+3+32+…+349+350的結(jié)果.10.如圖1,把兩個(gè)邊長(zhǎng)為1的小正方形沿對(duì)角線剪開,所得的4個(gè)直角三角形拼成一個(gè)面積為2的大正方形.由此得到了一種能在數(shù)軸上畫出無(wú)理數(shù)對(duì)應(yīng)點(diǎn)的方法.(1)圖2中A、B兩點(diǎn)表示的數(shù)分別為___________,____________;(2)請(qǐng)你參照上面的方法:①把圖3中的長(zhǎng)方形進(jìn)行剪裁,并拼成一個(gè)大正方形.在圖3中畫出裁剪線,并在圖4的正方形網(wǎng)格中畫出拼成的大正方形,該正方形的邊長(zhǎng)___________.(注:小正方形邊長(zhǎng)都為1,拼接不重疊也無(wú)空隙)②在①的基礎(chǔ)上,參照?qǐng)D2的畫法,在數(shù)軸上分別用點(diǎn)M、N表示數(shù)a以及.(圖中標(biāo)出必要線段的長(zhǎng))11.對(duì)于有理數(shù)、,定義了一種新運(yùn)算“※”為:如:,.(1)計(jì)算:①______;②______;(2)若是關(guān)于的一元一次方程,且方程的解為,求的值;(3)若,,且,求的值.12.若一個(gè)四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個(gè)數(shù)為“前介數(shù)”;若把這個(gè)數(shù)的個(gè)位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個(gè)新的四位數(shù),則稱這個(gè)新的四位數(shù)為“中介數(shù)”;記一個(gè)“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個(gè)“前介數(shù)”t,P(t)一定能被9整除.(3)若一個(gè)千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請(qǐng)求出滿足條件的P(t)的最大值.13.已知,在平面直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,點(diǎn)A滿足,平移線段AB使點(diǎn)A與原點(diǎn)重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C.(1)則a=,b=,點(diǎn)C坐標(biāo)為;(2)如圖1,點(diǎn)D(m,n)在線段BC上,求m,n滿足的關(guān)系式;(3)如圖2,E是線段OB上一動(dòng)點(diǎn),以O(shè)B為邊作∠BOG=∠AOB,交BC于點(diǎn)G,連CE交OG于點(diǎn)F,當(dāng)點(diǎn)E在線段OB上運(yùn)動(dòng)過程中,的值是否會(huì)發(fā)生變化?若變化請(qǐng)說明理由,若不變,請(qǐng)求出其值.14.已知,點(diǎn)在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點(diǎn),請(qǐng)利用(1)的結(jié)論說明:.(3)圖3中,的平分線與的平分線相交于點(diǎn),請(qǐng)直接寫出與之間的數(shù)量關(guān)系.15.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)的對(duì)應(yīng)點(diǎn),連接、、.(1)若在軸上存在點(diǎn),連接,使S△ABM=S□ABDC,求出點(diǎn)的坐標(biāo);(2)若點(diǎn)在線段上運(yùn)動(dòng),連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運(yùn)動(dòng),請(qǐng)直接寫出的數(shù)量關(guān)系.16.如果x是一個(gè)有理數(shù),我們定義x表示不小于x的最小整數(shù).如3.24,2.62,55,66.由定義可知,任意一個(gè)有理數(shù)都能寫成xxb的形式(0≤b<1).(1)直接寫出x與x,x1的大小關(guān)系;提示1:用“不完全歸納法”推導(dǎo)x與x,x1的大小關(guān)系;提示2:用“代數(shù)推理”的方法推導(dǎo)x與x,x1的大小關(guān)系.(2)根據(jù)(1)中的結(jié)論解決下列問題:①直接寫出滿足3m74的m取值范圍;②直接寫出方程3.5n22n1的解..17.在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD.(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由;(3)點(diǎn)P是直線BD上一個(gè)動(dòng)點(diǎn),連接PC、PO,當(dāng)點(diǎn)P在直線BD上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系18.如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),邊長(zhǎng)為2的正方形ABCD(點(diǎn)D與點(diǎn)O重合)和邊長(zhǎng)為4的正方形EFGH的邊CO和GH都在x軸上,且點(diǎn)H坐標(biāo)為(7,0).正方形ABCD以3個(gè)單位長(zhǎng)度/秒的速度沿著x軸向右運(yùn)動(dòng),記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運(yùn)動(dòng)時(shí)間為t秒,且t<4.(1)點(diǎn)F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運(yùn)動(dòng)的同時(shí),動(dòng)點(diǎn)P在線段FE上,以1個(gè)單位長(zhǎng)度/秒的速度從F到E運(yùn)動(dòng).連接AP,AE.①求t為何值時(shí),AP所在直線垂直于x軸;②求t為何值時(shí),S=S△APE.19.如圖,學(xué)校印刷廠與A,D兩地有公路、鐵路相連,從A地購(gòu)進(jìn)一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運(yùn)到D地批發(fā),已知公路運(yùn)價(jià)1.5元/(t?km),鐵路運(yùn)價(jià)1.2元/(t?km).這兩次運(yùn)輸支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購(gòu)進(jìn)款與運(yùn)輸費(fèi)的和多多少元?20.我國(guó)傳統(tǒng)數(shù)學(xué)名著《九章算術(shù)》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據(jù)以上譯文,提出以下兩個(gè)問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準(zhǔn)備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請(qǐng)問商人有幾種購(gòu)買方法?列出所有的可能.21.歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來(lái)表示.例如f(x)=x2+3x-5,把x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來(lái)表示.例如x=-1時(shí)多項(xiàng)式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,當(dāng)h()=a,求a的值;(3)已知f(x)=--2(a,b為常數(shù)),當(dāng)k無(wú)論為何值,總有f(1)=0,求a,b的值.22.某校規(guī)劃在一塊長(zhǎng)AD為18m、寬AB為13m的長(zhǎng)方形場(chǎng)地ABCD上,設(shè)計(jì)分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮,如圖所示,若設(shè)計(jì)三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM∶AN=8∶9,問通道的寬是多少?23.為鼓勵(lì)市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).下表是該市居民“一戶一表”生活用水階梯式計(jì)費(fèi)價(jià)格表的部分信息,請(qǐng)解答:自來(lái)水銷售價(jià)格每戶每月用水量單位:元/噸15噸及以下超過15噸但不超過25噸的部分超過25噸的部分5(1)小王家今年3月份用水20噸,要交水費(fèi)___________元;(用,的代數(shù)式表示)(2)小王家今年4月份用水21噸,交水費(fèi)48元;鄰居小李家4月份用水27噸,交水費(fèi)70元,求,的值.(3)在第(2)題的條件下,若交水費(fèi)76.5元,求本月用水量.(4)在第(2)題的條件下,小王家5月份用水量與4月份用水量相同,卻發(fā)現(xiàn)要比4月份多交9.6元錢水費(fèi),小李告訴小王說:“水價(jià)調(diào)整了,表中表示單位的,的值分別上調(diào)了整數(shù)角錢(沒超過1元),其他都沒變.”到底上調(diào)了多少角錢呢?請(qǐng)你幫小王求出符合條件的所有可能情況.24.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)榻獾茫驗(yàn)閠為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請(qǐng)你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請(qǐng)直接寫出答案.25.閱讀材料:如果x是一個(gè)有理數(shù),我們把不超過x的最大整數(shù)記作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.請(qǐng)你解決下列問題:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范圍是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.26.某地葡萄豐收,準(zhǔn)備將已經(jīng)采摘下來(lái)的11400公斤葡萄運(yùn)送杭州,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車運(yùn)載能力和運(yùn)費(fèi)如表表示(假設(shè)每輛車均滿載)車型甲乙丙汽車運(yùn)載量(公斤/輛)600800900汽車運(yùn)費(fèi)(元/輛)500600700(1)若全部葡萄都用甲、乙兩種車型來(lái)運(yùn),需運(yùn)費(fèi)8700元,則需甲、乙兩種車型各幾輛?(2)為了節(jié)省運(yùn)費(fèi),現(xiàn)打算用甲、乙、丙三種車型都參與運(yùn)送,已知它們的總輛數(shù)為15輛,你能分別求出這三種車型的輛數(shù)嗎?怎樣安排運(yùn)費(fèi)最省?27.某超市分別以每盞150元,190元的進(jìn)價(jià)購(gòu)進(jìn)A,B兩種品牌的護(hù)眼燈,下表是近兩天的銷售情況.銷售日期銷售數(shù)量(盞)銷售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B兩種品牌護(hù)眼燈的銷售價(jià);(2)若超市準(zhǔn)備用不超過4900元的金額購(gòu)進(jìn)這兩種品牌的護(hù)眼燈共30盞,求B品牌的護(hù)眼燈最多采購(gòu)多少盞?28.某水果店到水果批發(fā)市場(chǎng)采購(gòu)蘋果,師傅看中了甲、乙兩家某種品質(zhì)一樣的蘋果,零售價(jià)都為8元/千克,批發(fā)價(jià)各不相同,甲家規(guī)定:批發(fā)數(shù)量不超過100千克,全部按零價(jià)的九折優(yōu)惠;批發(fā)數(shù)量超過100千克全部按零售價(jià)的八五折優(yōu)惠,乙家的規(guī)定如下表:數(shù)量范圍(千克)不超過50的部分50以上但不超過150的部分150以上的部分價(jià)格(元)零售價(jià)的95%零售價(jià)的85%零售價(jià)的75%(1)如果師傅要批發(fā)240千克蘋果選擇哪家批發(fā)更優(yōu)惠?(2)設(shè)批發(fā)x千克蘋果(),問師傅應(yīng)怎樣選擇兩家批發(fā)商所花費(fèi)用更少?29.如圖,平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)在軸的正半軸上,的面積等于18.(1)求點(diǎn)的坐標(biāo);(2)如圖,點(diǎn)從點(diǎn)出發(fā),沿軸正方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)至點(diǎn)停止,同時(shí)點(diǎn)從點(diǎn)出發(fā),沿軸正方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)至點(diǎn)停止,點(diǎn)、點(diǎn)的速度都為每秒1個(gè)單位,設(shè)運(yùn)動(dòng)時(shí)間為秒,的面積為,求用含的式子表示,并直接寫出的取值范圍;(3)在(2)的條件下,過點(diǎn)作,連接并延長(zhǎng)交于,連接交于點(diǎn),若,求值及點(diǎn)的坐標(biāo).30.某生態(tài)柑橘園現(xiàn)有柑橘21噸,計(jì)劃租用A,B兩種型號(hào)的貨車將柑橘運(yùn)往外地銷售.已知滿載時(shí),用2輛A型車和3輛B型車一次可運(yùn)柑橘12噸;用3輛A型車和4輛B型車一次可運(yùn)柑橘17噸.(1)1輛A型車和1輛B型車滿載時(shí)一次分別運(yùn)柑橘多少噸?(2)若計(jì)劃租用A型貨車m輛,B型貨車n輛,一次運(yùn)完全部柑橘,且每輛車均為滿載.①請(qǐng)幫柑橘園設(shè)計(jì)租車方案;②若A型車每輛需租金120元/次,B型車每輛需租金100元/次.請(qǐng)選出最省錢的租車方案,并求出最少租車費(fèi).【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)(2)7(3)點(diǎn)的坐標(biāo)為或【詳解】試題分析:⑴抓住∥軸,可以推出縱坐標(biāo)相等,而是橫坐標(biāo)之差的絕對(duì)值,以此可以求出點(diǎn)的坐標(biāo),根據(jù)圖示要舍去一種情況.⑵四邊形是梯形,根據(jù)點(diǎn)的坐標(biāo)可以求出此梯形的上、下底和高,面積可求.⑶存在性問題可以先假設(shè)存在,在假設(shè)的基礎(chǔ)上以△=四邊形為等量關(guān)系建立方程,以此來(lái)探討在軸上是否存在著符合條件的點(diǎn).試題解析:⑴.∵∥軸,∴縱坐標(biāo)相等;∵∴點(diǎn)的縱坐標(biāo)也為2.設(shè)點(diǎn)的坐標(biāo)為,則.又,且,∴,解得:.由于點(diǎn)在第一象限,所以,所以的坐標(biāo)為.⑵.∵∥軸,且∴∴四邊形=.⑶.假設(shè)在軸上存在點(diǎn),使△=四邊形.設(shè)的坐標(biāo)為,則,而∴△=.∵△=四邊形,四邊形∴,解得;.均符合題意.∴在軸上存在點(diǎn),使△=四邊形.點(diǎn)的坐標(biāo)為或.2.(1);(2)的值為40°;(3).【分析】(1)過點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計(jì)算可求解n值.【詳解】證明:過點(diǎn)O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗(yàn),符合題意,故答案為:.【點(diǎn)睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運(yùn)用平行線的性質(zhì)是解題的關(guān)鍵.3.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.4.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的要求,t<150,在這個(gè)時(shí)間段內(nèi)A可以轉(zhuǎn)3次,分情況討論.【詳解】解:(1).又,.,;(2)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,如圖,作,而,,,,,,(3)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行.依題意得①當(dāng)時(shí),兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當(dāng)時(shí),兩光束平行,所以兩河岸平行,所以所以,,解得;③當(dāng)時(shí),圖大概如①所示,解得(不合題意)綜上所述,當(dāng)秒或82.5秒時(shí),兩燈的光束互相平行.【點(diǎn)睛】這道題考察的是平行線的性質(zhì)和一元一次方程的應(yīng)用.根據(jù)平行線的性質(zhì)找到對(duì)應(yīng)角列出方程是解題的關(guān)鍵.5.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點(diǎn)P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點(diǎn)作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點(diǎn)睛】本題主要考查平行線的性質(zhì)與判定,靈活運(yùn)用平行線的性質(zhì)與判定是解題的關(guān)鍵.6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).7.(1)5,3;(2)有正格數(shù)對(duì),正格數(shù)對(duì)為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對(duì).將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對(duì)為:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是實(shí)數(shù)的運(yùn)算,理解新定義是解此題的關(guān)鍵.8.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對(duì)數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對(duì)數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運(yùn)算的題目,解答本題的關(guān)鍵是理解給出的對(duì)數(shù)的定義.9.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(2)先歸納總結(jié)出規(guī)律,然后按規(guī)律解答即可;(3)先利用得出規(guī)律的變形,然后利用規(guī)律解答即可.【詳解】解:(1)根據(jù)題意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根據(jù)題意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案為:(1)x7-1;(2)xn+1-1;(3).【點(diǎn)睛】本題考查了平方差公式以及規(guī)律型問題,弄清題意、發(fā)現(xiàn)數(shù)字的變化規(guī)律是解答本題的關(guān)鍵.10.(1),;(2)①圖見解析,;②見解析【分析】(1)根據(jù)圖1得到小正方形的對(duì)角線長(zhǎng),即可得出數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)(2)根據(jù)長(zhǎng)方形的面積得正方形的面積,即可得到正方形的邊長(zhǎng),再畫出圖象即可;(3)從原點(diǎn)開始畫一個(gè)長(zhǎng)是2,高是1的長(zhǎng)方形,對(duì)角線長(zhǎng)即是a,再用圓規(guī)以這個(gè)長(zhǎng)度畫弧,交數(shù)軸于點(diǎn)M,再把這個(gè)長(zhǎng)方形向左平移3個(gè)單位,用同樣的方法得到點(diǎn)N.【詳解】(1)由圖1知,小正方形的對(duì)角線長(zhǎng)是,∴圖2中點(diǎn)A表示的數(shù)是,點(diǎn)B表示的數(shù)是,故答案是:,;(2)①長(zhǎng)方形的面積是5,拼成的正方形的面積也應(yīng)該是5,∴正方形的邊長(zhǎng)是,如圖所示:故答案是:;②如圖所示:【點(diǎn)睛】本題考查無(wú)理數(shù)的表示方法,解題的關(guān)鍵是理解題意,模仿題目中給出的解題方法進(jìn)行求解.11.(1)①5;②;(2)1;(3)16.【分析】(1)根據(jù)題中定義代入即可得出;(2)根據(jù),討論3和的兩種大小關(guān)系,進(jìn)行計(jì)算;(3)先判定A、B的大小關(guān)系,再進(jìn)行求解.【詳解】(1)根據(jù)題意:∵,∴,∵,∴.(2)∵,∴,①若,則,解得,②若,則,解得(不符合題意),∴.(3)∵,∴,∴,得,∴.【點(diǎn)睛】本題考查了一種新運(yùn)算,讀懂題意掌握新運(yùn)算并能正確化簡(jiǎn)是解題的關(guān)鍵.12.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個(gè)數(shù);對(duì)應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個(gè)數(shù),計(jì)算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對(duì)應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對(duì)應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對(duì)應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個(gè)數(shù),又對(duì)應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個(gè)數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時(shí),且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時(shí),能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時(shí),且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點(diǎn)睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對(duì)應(yīng)的“中介數(shù)”是求解本題的關(guān)鍵.本題中運(yùn)用到的分類討論思想是重要一種數(shù)學(xué)解題思想方法.13.(1);(2);(3)不變,值為2.【分析】(1)根據(jù),即可得出a,b的值,再根據(jù)平移的性質(zhì)得出,因?yàn)辄c(diǎn)C在y軸負(fù)半軸,即可得出點(diǎn)C的坐標(biāo);(2)過點(diǎn)D分別作DM⊥x軸于點(diǎn)M,DN⊥y軸于點(diǎn)N,連接OD,在中用等面積法即可求出m和n的關(guān)系式;(3)分別過點(diǎn)E,F(xiàn)作EP∥OA,F(xiàn)Q∥OA分別交y軸于點(diǎn)P,點(diǎn)Q,根據(jù)平行線的性質(zhì),得出進(jìn)而得到的值.【詳解】(1)解:∵,∴∴∵且C在y軸負(fù)半軸上,∴,故填:;(2)如圖1,過點(diǎn)D分別作DM⊥x軸于點(diǎn)M,DN⊥y軸于點(diǎn)N,連接OD.∵AB⊥x軸于點(diǎn)B,且點(diǎn)A,D,C三點(diǎn)的坐標(biāo)分別為:∴,∴,又∵S△BOC=S△BOD+S△COD=OB×MD+OC×ND,∴;(3)解:的值不變,值為2.理由如下:如圖所示,分別過點(diǎn)E,F(xiàn)作EP∥OA,F(xiàn)Q∥OA分別交y軸于點(diǎn)P,點(diǎn)Q,∵線段OC是由線段AB平移得到,∴BC∥OA,又∵EP∥OA,∴EP∥BC,∴∠GCF=∠PEC,∵EP∥OA,∴∠AOE=∠OEP,∴∠OEC=∠OEP+∠PEC=∠AOE+∠GCF,同理:∠OFC=∠AOF+∠GCF,又∵∠AOB=∠BOG,∴∠OFC=2∠AOE+∠GCF,∴.【點(diǎn)睛】本題主要考查了非負(fù)數(shù)的性質(zhì),坐標(biāo)與圖形,平行線的判定與性質(zhì),以及平移的性質(zhì),解決問題的關(guān)鍵是作輔助線,運(yùn)用等面積法,角的和差關(guān)系以及平行線的性質(zhì)進(jìn)行求解.14.(1)說明過程請(qǐng)看解答;(2)說明過程請(qǐng)看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進(jìn)而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,結(jié)合(1)的結(jié)論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點(diǎn)睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).15.(1)(0,4)或(0,-4);(2);(3)答案見解析【解析】(1)先根據(jù)S△ABM=S□ABDC,得出△ABM的高為4,再根據(jù)三角形面積公式得到M點(diǎn)的坐標(biāo);(2)先計(jì)算出S梯形OBDC=5,再討論:當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),S△POC的最小值=2,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),S△POC的最大值=3,即可判斷S=S△PCD+S△POB的取值范圍的取值范圍;(3)分類討論:當(dāng)點(diǎn)P在BD上,如圖1,作PE∥CD,根據(jù)平行線的性質(zhì)得CD∥PE∥AB,則∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;當(dāng)點(diǎn)P在線段BD的延長(zhǎng)線上時(shí),如圖2,同樣有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO-∠EPC=∠BOP-∠DCP,于是∠BOP-∠DCP=∠CPO;同理可得當(dāng)點(diǎn)P在線段DB的延長(zhǎng)線上時(shí),∠DCP-∠BOP=∠CPO.解:(1)由題意,得C(0,2)∴□ABDC的高為2若S△ABM=S□ABDC,則△ABM的高為4又∵點(diǎn)M是y軸上一點(diǎn)∴點(diǎn)M的坐標(biāo)為(0,4)或(0,-4)(2)∵B(-2,0),O(0,0)∴OB=2由題意,得C(0,2),D(-3,2)∴OC=2,CD=3∴S梯形OBDC=點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)到端點(diǎn)B時(shí),△PCO的面積最小,為當(dāng)點(diǎn)運(yùn)動(dòng)到端點(diǎn)D時(shí),△PCO的面積最大,為∴S=S△PCD+S△POB=S梯形OBDC-S△PCO=5-S△PCO∴S的最大值為5-2=3,最小值為5-3=2故S的取值范圍是:(3)如圖:當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí),點(diǎn)睛:本題主要考查坐標(biāo)與圖形的性質(zhì)及三角形的面積.利用分類討論思想,并構(gòu)造輔助線利用平行線的性質(zhì)推理是解題的關(guān)鍵.16.(1);(2)①;②或.【分析】(1)提示1:先列出4個(gè)x的值,分別得出與的大小關(guān)系,再利用“不完全歸納法”即可得;提示2:先根據(jù)“”得出,再根據(jù)“”即可得;(2)①根據(jù)(1)的結(jié)論得出,據(jù)此解不等式組即可得;②先根據(jù)(1)的結(jié)論得出,再解不等式組求出n的取值范圍,從而可得的取值范圍,然后根據(jù)“為整數(shù)”可得出方程,由此解方程即可得.【詳解】(1)提示1:當(dāng)時(shí),,則當(dāng)時(shí),,則當(dāng)時(shí),,則當(dāng)時(shí),,則由“不完全歸納法”可得:;提示2:,且;(2)①由(1)的結(jié)論得:解得;②由(1)的結(jié)論得:解得為整數(shù)則或解得或.【點(diǎn)睛】本題考查了一元一次不等式組的應(yīng)用、解一元一次方程等知識(shí)點(diǎn),理解新定義,正確求解不等式組是解題關(guān)鍵.17.(1)C(0,2),D(4,2),S四邊形ABDC=8;(2)存在,P(0,4)或(0,﹣4);(3)點(diǎn)p在線段BD上,∠OPC=∠PCD+∠POB;點(diǎn)P在BD延長(zhǎng)線上,∠OPC=∠POB-∠PCD;點(diǎn)P在DB延長(zhǎng)線上運(yùn)動(dòng)時(shí),∠OPC=∠PCD-∠POB.【解析】【分析】(1)根據(jù)點(diǎn)平移的規(guī)律易得點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(4,2);四邊形ABDC的面積=2×(3+1)=8;(2)存在.設(shè)點(diǎn)P到AB的距離為h,則S△PAB=×AB×h,根據(jù)S△PAB=S四邊形ABDC,列方程求h的值,確定P點(diǎn)坐標(biāo).(3)分類討論:當(dāng)點(diǎn)P在線段BD上,作PM∥AB,根據(jù)平行線的性質(zhì)由MP∥AB得∠2=∠POB,由CD∥AB得到CD∥MF,則∠1=∠PCD,所以∠OPC=∠POB+∠PCD;同樣得到當(dāng)點(diǎn)P在線段DB的延長(zhǎng)線上,∠OPC=∠PCD-∠POB;當(dāng)點(diǎn)P在線段BD的延長(zhǎng)線上,得到∠OPC=∠POB-∠PCD.【詳解】(1)依題意,得C(0,2),D(4,2),∴S四邊形ABDC=AB×OC=4×2=8;(2)在y軸上是存在一點(diǎn)P,使S△PAB=S四邊形ABDC.理由如下:設(shè)點(diǎn)P到AB的距離為h,S△PAB=×AB×h=2h,由S△PAB=S四邊形ABDC,得2h=8,解得h=4,∴P(0,4)或(0,-4).(3)當(dāng)點(diǎn)P在線段BD上,作PM∥AB,如圖1,∵M(jìn)P∥AB,∴∠2=∠POB,∵CD∥AB,∴CD∥MP,∴∠1=∠PCD,∴∠OPC=∠1+∠2=∠POB+∠PCD;當(dāng)點(diǎn)P在線段DB的延長(zhǎng)線上,作PN∥AB,如圖2,∵PN∥AB,∴∠NPO=∠POB,∵CD∥AB,∴CD∥PN,∴∠NPC=∠FCD,∴∠OPC=∠NPC-∠NPO=∠FCD-∠POB;同樣得到當(dāng)點(diǎn)P在線段BD的延長(zhǎng)線上,得到∠OPC=∠POB-∠PCD.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)得到線段的長(zhǎng)和線段與坐標(biāo)軸的關(guān)系.也考查了平行線的性質(zhì)和分類討論的思想.18.(1)(3,4);(2)①t=時(shí),AP所在直線垂直于x軸;②當(dāng)t為或時(shí),S=S△APE.【分析】(1)根據(jù)直角坐標(biāo)系得出點(diǎn)F的坐標(biāo)即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標(biāo)系可得:F坐標(biāo)為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時(shí),AP所在直線垂直于x軸;②由題意知,OH=7,所以當(dāng)時(shí),點(diǎn)D與點(diǎn)H重合,所以要分以下兩種情況討論:情況一:當(dāng)時(shí),GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當(dāng)時(shí),如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當(dāng)t為或時(shí),S=S△APE.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中點(diǎn)的移動(dòng),一元一次方程的應(yīng)用等問題,理解題意,分類討論是解題關(guān)鍵.19.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設(shè)白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購(gòu)進(jìn)款與運(yùn)輸費(fèi)的和),進(jìn)行計(jì)算即可.【詳解】解:(1)設(shè)白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購(gòu)進(jìn)款與運(yùn)輸費(fèi)的和多69520元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是找準(zhǔn)等量關(guān)系,正確列出二元一次方程組.20.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購(gòu)買方法:方案一:購(gòu)買2頭牛,7頭羊;方案二:購(gòu)買4頭牛,4頭羊;方案三:購(gòu)買6頭牛,1頭羊【分析】(1)設(shè)每頭牛值x兩銀子,每只羊值y兩銀子,根據(jù)“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)購(gòu)買a頭牛,b只羊,利用總價(jià)=單價(jià)×數(shù)量,即可得出關(guān)于a,b的二元一次方程,結(jié)合a,b均為正整數(shù),即可得出各購(gòu)買方案.【詳解】解:(1)設(shè)每頭牛x兩銀子,每頭羊y兩銀子,根據(jù)題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設(shè))(2)設(shè)該商人購(gòu)買了a頭牛,b頭羊,根據(jù)題意,得∵a、b均為正整數(shù)∴該方程的解為或或所以共有三種購(gòu)買方法:方案一:購(gòu)買2頭牛,7頭羊;方案二:購(gòu)買4頭牛,4頭羊;方案三:購(gòu)買6頭牛,1頭羊.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用、數(shù)學(xué)常識(shí)以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)找準(zhǔn)等量關(guān)系,正確列出二元一次方程.21.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)將x=-1和x=-2分別代入可得出答案;(2)將x=代入可得關(guān)于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得關(guān)于a、b、k的方程,根據(jù)無(wú)論k為何值時(shí),都成立就可求出a、b的值.【詳解】(1)由題意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由題意得:,解得:a=-4;(3)∵k無(wú)論為何值,總有f(1)=0,∴=0,則當(dāng)k=1、k=0時(shí),可得方程組,解得:.【點(diǎn)睛】本題考查了代數(shù)式求值、解一元一次方程、一元一次方程的解、解二元一次方程組等,讀懂新定義是解題的關(guān)鍵.22.1【分析】利用AM:AN=8:9,設(shè)通道的寬為xm,AM=8ym,則AN=9ym,進(jìn)而利用AD為18m,AB為13m,得出等式求出即可.【詳解】設(shè)通道的寬是xm,AM=8ym.因?yàn)锳M∶AN=8∶9,所以AN=9ym.所以解得答:通道的寬是1m.故答案為1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用.23.;;噸;的值上調(diào)了時(shí)的值上調(diào)了或者的值上調(diào)了時(shí)的值上調(diào)了.【分析】(1)小王家今年3月份用水20噸,超過15噸,所以分兩部分計(jì)費(fèi),15噸及以下費(fèi)用為,超過15噸的費(fèi)用為,故總費(fèi)用;(2)依題意列方程組,可求解;(3)在第(2)題的條件下,正好25噸時(shí),所需費(fèi)用(元),可知若交水費(fèi)76.5元,肯定用水超過25噸,可得用水量;(4)由小王家5月份用水量與4月份用水量相同與要比4月份多交9.6元錢水費(fèi),可列方程,滿足方程的條件的解列出即所求.【詳解】解:(1)小王家今年3月份用水20噸,要交消費(fèi)為,故答案為:;(2)根據(jù)題意得,,解得:;(3)在第(2)題的條件下,當(dāng)正好25噸時(shí),可得費(fèi)用(元),由交水費(fèi)76.5元可知,小王家用水量超過25噸,即:超過25噸的用水量噸,合計(jì)本月用水量噸(4)設(shè)上調(diào)了元,上調(diào)了元,根據(jù)題意得:,,為整數(shù)角線(沒超過1元),當(dāng)時(shí),元,當(dāng)時(shí),元,的值上調(diào)了時(shí),的值上調(diào)了;的值上調(diào)了時(shí),的值上調(diào)了.【點(diǎn)睛】本題考查了二元一次方程組的實(shí)際應(yīng)用,并學(xué)會(huì)看圖提練已知,用二元一次方程列舉法來(lái)表示解.24.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)椋獾?3<t<2.因?yàn)閠為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因?yàn)閠為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點(diǎn)睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關(guān)鍵.25.(1)4,﹣7;(2)3≤x<4;(3);(4)或或或【分析】(1)根據(jù)題目中的定義,[x]表示不超過x的最大整數(shù),求出結(jié)果即可;(2)根據(jù)定義,是大于等于3小于4的數(shù);(3)由得到,求出的取值范圍,再由是整數(shù)即可得到的值;(4)由和得,設(shè)是整數(shù),即可求出的取值范圍,然后分類討論求出的值即可.【詳解】解:(1)∵不超過4.8的最大整數(shù)是4,∴,∵不超過的最大整數(shù)是,∴故答案是:4,;(2)∵,∴是大于等于3小于4的數(shù),即;(3)∵,∴,解得,∵是整數(shù),∴;(4)∵,∴,∵,∴,即,∵(是整數(shù)),∴,∵,∴,解得,當(dāng)時(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,綜上:的值為或或或.【點(diǎn)睛】本題考查新定義問題,不等式組的運(yùn)用,解題的關(guān)鍵是理解題目中的意義,列出不等式組進(jìn)行求解.26.(1)甲3輛,乙12輛;(2)有三種方案,具體見解析,甲4輛,乙9輛,丙2輛最省錢.【分析】(1)設(shè)需要甲x輛,乙y輛,根據(jù)運(yùn)送11400公斤和需運(yùn)費(fèi)8700元,可列出方程組求解.(2)設(shè)需要甲x輛,乙y輛,則丙(15﹣x﹣y)輛,根據(jù)甲汽車運(yùn)載量+乙汽車運(yùn)載量+丙汽車運(yùn)載量=11400,列方程,化簡(jiǎn)后,根據(jù)甲、乙、丙三種車型都參與運(yùn)送,即x>0,y>0,15﹣x﹣y>0,解不等式即可求出x的范圍,進(jìn)而得出方案.計(jì)算出每種方案需要的運(yùn)費(fèi),比較即可得出運(yùn)費(fèi)最省的方案.【詳解】(1)設(shè)需要甲x輛,乙y輛,根據(jù)題意得:解得:.答:甲3輛,乙12輛;(2)設(shè)需要甲x輛,乙y輛,則丙(15﹣x﹣y)輛,根據(jù)題意得:600x+800y+900(15﹣x﹣y)=11400化簡(jiǎn)得:y=21﹣3x.∵x>0,y=21﹣3x>0,15﹣x﹣y=2x-6>0,解得:3<x<7.∵x為整數(shù),∴x=4,5,6.因此方案有三種:方案①:甲4輛,乙9輛,丙2輛;方案②:甲5輛,乙6輛,丙4輛;方案③:甲6輛,乙3輛,丙6輛;則運(yùn)費(fèi)分別為:①4×500+9×600+2×700=8800(元).②5×500+6×600+4×700=8900(元);③6×500+3×600+6×700=9000(元).故第一種方案運(yùn)費(fèi)最省,為8800元.【點(diǎn)睛】本題考查了二元一次方程組與二元一次方程的實(shí)際運(yùn)用,找出題目蘊(yùn)含的數(shù)量關(guān)系,建立方程或方程組解決問題.27.(1)A品牌為210元/盞,B品牌為260元/盞.(2)10盞.【分析】(1)設(shè)A品牌護(hù)眼燈的銷售價(jià)為x元/盞,B品牌護(hù)眼燈的銷售價(jià)為y元/盞,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合兩天的銷售情況,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)采購(gòu)m盞B品牌的護(hù)眼燈,則采購(gòu)(30-m)盞A品牌的護(hù)眼燈,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合總費(fèi)用不超過4900元,即可得出關(guān)于m的一元一次不等式,解之取其中的最大值即可得出結(jié)論.【詳解】(1)設(shè)A品牌護(hù)眼燈的銷售價(jià)為x元/盞,B品牌護(hù)眼燈的銷售價(jià)為y元/盞,依題意,得:,解得:.答:A品
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高三考試題及答案解析
- 公益活動(dòng)參與及責(zé)任承諾聲明書6篇
- 采購(gòu)需求申請(qǐng)及審批標(biāo)準(zhǔn)化表格
- 2025年云南司法考試試題及答案
- 2025年高二物理下學(xué)期模擬高考試卷(基礎(chǔ))
- 機(jī)械崗位筆試試題及答案
- 甘孜消防考試題及答案解析
- 企業(yè)內(nèi)外部溝通模板工具
- 學(xué)科數(shù)學(xué)面試真題及答案
- 成長(zhǎng)的煩惱與收獲議論文14篇范文
- 基于SprintBoot的大學(xué)生實(shí)習(xí)管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
- 外踝撕脫骨折課件
- 2024-2025學(xué)年河南省省直轄縣級(jí)行政單位人教PEP版(2024)三年級(jí)下冊(cè)6月期末測(cè)試英語(yǔ)試卷(含答案)
- 陜縣支建煤礦“7.29”搶險(xiǎn)救援案例-圖文.課件
- 心血管疾病研究進(jìn)展
- 水下激光通信技術(shù)
- 英語(yǔ)自我介紹高中課件
- 企業(yè)設(shè)備研發(fā)計(jì)劃方案(3篇)
- 應(yīng)急救援法律法規(guī)25課件
- 學(xué)校食堂各種檢查記錄表格表冊(cè)
- 浙江省寧波市事業(yè)單位招聘考試《綜合基礎(chǔ)知識(shí)》真題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論