2026屆浙江省寧波市慈溪市慈溪市附海初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2026屆浙江省寧波市慈溪市慈溪市附海初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2026屆浙江省寧波市慈溪市慈溪市附海初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2026屆浙江省寧波市慈溪市慈溪市附海初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2026屆浙江省寧波市慈溪市慈溪市附海初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆浙江省寧波市慈溪市慈溪市附海初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.若關(guān)于x的一元二次方程x2+2x+k=0有兩個不相等的實(shí)數(shù)根,則k的最大整數(shù)是()A.1 B.0 C.﹣1 D.﹣22.如圖,⊙O的半徑為2,點(diǎn)A的坐標(biāo)為,直線AB為⊙O的切線,B為切點(diǎn),則B點(diǎn)的坐標(biāo)為()A. B. C. D.3.如果,那么代數(shù)式的值是().A.2 B. C. D.4.在△ABC中,若三邊BC,CA,AB滿足BC:CA:AB=3:4:5,則cosA的值為()A. B. C. D.5.正方形具有而菱形不具有的性質(zhì)是()A.對角線互相平分 B.對角線相等C.對角線平分一組對角 D.對角線互相垂直6.如圖直角三角板∠ABO=30°,直角項點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)的y1=圖象上,頂點(diǎn)B在函數(shù)y2=的圖象上,則=()A. B. C. D.7.華為手機(jī)鎖屏密碼是6位數(shù),若密碼的前4位數(shù)字已經(jīng)知道,則一次解鎖該手機(jī)密碼的概率是()A. B. C. D.8.下列命題錯誤的是()A.對角線互相垂直平分的四邊形是菱形B.一組對邊平行,一組對角相等的四邊形是平行四邊形C.矩形的對角線相等D.對角線相等的四邊形是矩形9.一元二次方程x2﹣3x﹣4=0的一次項系數(shù)是()A.1 B.﹣3 C.3 D.﹣410.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在△ABC中,D、E分別是AB、AC上的點(diǎn),且DE∥BC,若AD:AB=4:9,則S△ADE:S△ABC=.12.公元前4世紀(jì),古希臘數(shù)學(xué)家歐多克索斯第一個系統(tǒng)研究了有關(guān)黃金矩形的問題.并建立起比例理論,他認(rèn)為所謂黃金分割,指的是把長為L的線段分為兩部分,使其中較長部分對于全部之比,等于較短部分對于較長部分之比.所謂黃金矩形指的就是矩形的寬與長的比適合這一比例.則在黃金矩形中寬與長的比值是______.13.如圖,要測量池塘兩岸相對的A,B兩點(diǎn)間的距離,可以在池塘外選一點(diǎn)C,連接AC,BC,分別取AC,BC的中點(diǎn)D,E,測得DE=50m,則AB的長是_______m.14.如圖,在A時測得某樹的影長為4米,在B時測得該樹的影長為9米,若兩次日照的光線互相垂直,則該樹的高度為___________米.15.關(guān)于x的方程的解是,(a,m,b均為常數(shù),),則關(guān)于x的方程的解是________.16.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為12m,那么這棟建筑物的高度為_____m.17.半徑為4的圓中,長為4的弦所對的圓周角的度數(shù)是_________.18.如圖,ABC是⊙O的內(nèi)接三角形,AD是△ABC的高,AE是⊙O的直徑,且AE=4,若CD=1,AD=3,則AB的長為______.三、解答題(共66分)19.(10分)用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=1.20.(6分)(1)解方程:;(2)求二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo).21.(6分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點(diǎn)A(-1,6),B(a,-2).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)根據(jù)圖象直接寫出y1>y2時,x的取值范圍.22.(8分)如圖,在中,,是的平分線,是上一點(diǎn),以為半徑的經(jīng)過點(diǎn).(1)求證:是切線;(2)若,,求的長.23.(8分)某日,深圳高級中學(xué)(集團(tuán))南北校區(qū)初三學(xué)生參加?xùn)|校區(qū)下午時的交流活動,南校區(qū)學(xué)生中午乘坐校車出發(fā),沿正北方向行12公里到達(dá)北校區(qū),然后南北校區(qū)一同前往東校區(qū)(等待時間不計).如圖所示,已知東校區(qū)在南校區(qū)北偏東方向,在北校區(qū)北偏東方向.校車行駛狀態(tài)的平均速度為,途中一共經(jīng)過30個紅綠燈,平均每個紅綠燈等待時間為30秒.(1)求北校區(qū)到東校區(qū)的距離;(2)通過計算,說明南北校區(qū)學(xué)生能否在前到達(dá)東校區(qū).(本題參考數(shù)據(jù):,)24.(8分)如圖,,平分,且交于點(diǎn),平分,且交于點(diǎn),與相交于點(diǎn),連接求的度數(shù);求證:四邊形是菱形.25.(10分)二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:(1)方程ax2+bx+c=0的兩個根為(2)y隨x的增大而減小的自變量x的取值范圍為;(3)若方程ax2+bx+c=k有兩個不相等的實(shí)數(shù)根時,k的取值范圍為;(4)求出此拋物線的解析式.26.(10分)如圖,在銳角△ABC中,小明進(jìn)行了如下的尺規(guī)作圖:①分別以點(diǎn)A、B為圓心,以大于12AB的長為半徑作弧,兩弧分別相交于點(diǎn)P、Q②作直線PQ分別交邊AB、BC于點(diǎn)E、D.(1)小明所求作的直線DE是線段AB的;(2)聯(lián)結(jié)AD,AD=7,sin∠DAC=17,BC=9,求AC

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)題意知,,代入數(shù)據(jù),即可求解.【詳解】由題意知:一元二次方程x2+2x+k=1有兩個不相等的實(shí)數(shù)根,∴解得∴.∴k的最大整數(shù)是1.故選B.本題主要考查了利用一元二次方程根的情況求參數(shù)范圍,正確掌握利用一元二次方程根的情況求參數(shù)范圍的方法是解題的關(guān)鍵.2、D【解析】過點(diǎn)A作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D,∵⊙O的半徑為2,點(diǎn)A的坐標(biāo)為,即OC=2.∴AC是圓的切線.∵OA=4,OC=2,∴∠AOC=60°.又∵直線AB為⊙O的切線,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,BD=,即B點(diǎn)的坐標(biāo)為.故選D.3、A【解析】(a-)·=·=·=a+b=2.故選A.4、D【分析】根據(jù)已知條件,運(yùn)用勾股定理的逆定理可得該三角形為直角三角形,再根據(jù)余弦的定義解答即可.【詳解】解:設(shè)分別為,,為直角三角形,.本題主要考查了勾股定理的逆定理和余弦,熟練掌握對應(yīng)知識點(diǎn)是解答關(guān)鍵.5、B【分析】根據(jù)正方形和菱形的性質(zhì)逐項分析可得解.【詳解】根據(jù)正方形對角線的性質(zhì):平分、相等、垂直;菱形對角線的性質(zhì):平分、垂直,故選B.考點(diǎn):1.菱形的性質(zhì);2.正方形的性質(zhì).6、D【分析】設(shè)AC=a,則OA=2a,OC=a,根據(jù)直角三角形30°角的性質(zhì)和勾股定理分別計算點(diǎn)A和B的坐標(biāo),寫出A和B兩點(diǎn)的坐標(biāo),代入解析式求出k1和k2的值,即可求的值.【詳解】設(shè)AB與x軸交點(diǎn)為點(diǎn)C,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,設(shè)AC=a,則OA=2a,OC=a,∴A(a,a),∵A在函數(shù)y1=的圖象上,∴k1=a×a=a2,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函數(shù)y2=的圖象上,∴k2=﹣3a×a=﹣3a2,∴=,故選:D.此題考查反比例函數(shù)的性質(zhì),勾股定理,直角三角形的性質(zhì),設(shè)AC=a是解題的關(guān)鍵,由此表示出其他的線段求出k1與k2的值,才能求出結(jié)果.7、C【分析】根據(jù)排列組合,求出最后兩位數(shù)字共存在多少種情況,即可求解一次解鎖該手機(jī)密碼的概率.【詳解】根據(jù)題意,我們只需解鎖后兩位密碼即可,兩位數(shù)字的排列有種可能∴一次解鎖該手機(jī)密碼的概率是故答案為:C.本題考查了排列組合的問題,掌握排列組合的公式是解題的關(guān)鍵.8、D【分析】根據(jù)矩形、菱形、平行四邊形的知識可判斷出各選項,從而得出答案.【詳解】A、對角線互相垂直平分的四邊形是菱形,命題正確,不符合題意;B、一組對邊平行,一組對角相等的四邊形是平行四邊形,命題正確,不符合題意;C、矩形的對角線相等,命題正確,不符合題意;D、對角線相等的四邊形不一定是矩形,例如等腰梯形,故本選項符合題意.故選:D.本題主要考查了命題與定理的知識,解答本題的關(guān)鍵是熟練掌握平行四邊形、菱形以及矩形的性質(zhì),此題難度不大.9、B【解析】根據(jù)一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0),在一般形式中bx叫一次項,系數(shù)是b,可直接得到答案.【詳解】解:一次項是:未知數(shù)次數(shù)是1的項,故一次項是﹣3x,系數(shù)是:﹣3,故選:B.此題考查的是求一元一次方程一般式中一次項系數(shù),掌握一元一次方程的一般形式和一次項系數(shù)的定義是解決此題的關(guān)鍵.10、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合求解.【詳解】B既是軸對稱圖形,又是中心對稱圖形;C只是軸對稱圖形;D既不是軸對稱圖形也不是中心對稱圖形,只有A符合.故選A.二、填空題(每小題3分,共24分)11、16:1【分析】由DE∥BC,證出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案為16:1.12、【分析】根據(jù)黃金矩形指的就是矩形的寬與長的比適合黃金分割比例,所以求出黃金分割比例即可,設(shè)線段長為1,較長的部分為x,則較短的部分為1-x,根據(jù)較長部分對于全部之比,等于較短部分對于較長部分之比,求出x,即可得到比值.【詳解】解:設(shè)線段長為1,較長的部分為x,則較短的部分為1-x∴∴x1=,x2=(舍)∴黃金分割比例為:∴黃金矩形中寬與長的比值:故答案為:.本題主要考查了黃金分割比例,讀懂題意并且列出比例式正確求解是解決本題的關(guān)鍵.13、1【分析】先判斷出DE是△ABC的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得AB=2DE,問題得解.【詳解】∵點(diǎn)D,E分別是AC,BC的中點(diǎn),∴DE是△ABC的中位線,∴AB=2DE=2×50=1米.故答案為1.本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,熟記定理并準(zhǔn)確識圖是解題的關(guān)鍵.14、6【解析】根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△CDF,進(jìn)而可得,代入數(shù)據(jù)可得答案.【詳解】如圖,在中,米,米,易得,,即,米.故答案為:6.本題通過投影的知識結(jié)合三角形的相似,求解高的大小,是平行投影性質(zhì)在實(shí)際生活中的應(yīng)用.15、x1=-12,x2=1【分析】把后面一個方程中的x+3看作一個整體,相當(dāng)于前面方程中的x來求解.【詳解】解:∵關(guān)于x的方程的解是,(a,m,b均為常數(shù),a≠0),∴方程變形為,即此方程中x+3=-9或x+3=11,解得x1=-12,x2=1,故方程的解為x1=-12,x2=1.故答案為x1=-12,x2=1.此題主要考查了方程解的含義.注意觀察兩個方程的特點(diǎn),運(yùn)用整體思想進(jìn)行簡便計算.16、1.【解析】試題解析:設(shè)這棟建筑物的高度為由題意得解得:即這棟建筑物的高度為故答案為1.17、或【分析】首先根據(jù)題意畫出圖形,然后在優(yōu)弧上取點(diǎn)C,連接AC,BC,在劣弧上取點(diǎn)D,連接AD,BD,易得是等邊三角形,再利用圓周角定理,即可得出答案.【詳解】.如圖所示在優(yōu)弧上取點(diǎn)C,連接AC,BC,在劣弧上取點(diǎn)D,連接AD,BD,∵,∴∴是等邊三角形∴∴∴∴所對的圓周角的度數(shù)為或故答案為:或.本題考查了圓周角的問題,掌握圓周角定理是解題的關(guān)鍵.18、【分析】利用勾股定理求出AC,證明△ABE∽△ADC,推出,由此即可解決問題.【詳解】解:∵AD是△ABC的高,

∴∠ADC=90°,

∴,

∵AE是直徑,

∴∠ABE=90°,

∴∠ABE=∠ADC,

∵∠E=∠C,

∴△ABE∽△ADC,

∴,

∴,

∴,

故答案為:.本題考查相似三角形的判定和性質(zhì),勾股定理、圓周角定理等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題.三、解答題(共66分)19、(1)x1=?3,x2=(2)【分析】(1)利用因式分解法解方程即可;(2)利用公式法解方程即可.【詳解】(1)3x(x+3)=2(x+3)3x(x+3)-2(x+3)=1(x+3)(3x-2)=13x-2=1或x+3=1∴x1=,x2=-3;(2)2x2-4x-3=1a=2,b=-4,c=-3,△=16+24=41>1,,∴x1=1+,x2=1-.本題考查了一元二次方程的解法,解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點(diǎn)靈活選用合適的方法.20、(1)x1=1+,x2=1﹣;(2)(5,0),(-3,0),(0,-15)【分析】(1)根據(jù)一元二次方程的求根公式,即可求解;(2)令y=0,求出x的值,令x=0,求出y的值,進(jìn)而即可得到答案.【詳解】(1)x2﹣2x﹣1=0,∵a=1,b=﹣2,c=﹣1,∴△=b2﹣4ac=4+4=8>0,∴x==,∴x1=1+,x2=1﹣;(2)令y=0,則,即:,解得:,令x=0,則y=-15,∴二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)為:(5,0),(-3,0),(0,-15).本題主要考查一元二次方程的解法和二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo),掌握一元二次方程的求根公式以及求二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo),是解題的關(guān)鍵.21、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把點(diǎn)A坐標(biāo)代入反比例函數(shù)求出k的值,也就求出了反比例函數(shù)解析式,再把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式求出a的值,得到點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)找出直線在一次函數(shù)圖形的上方的自變量x的取值即可.【詳解】解:(1)把點(diǎn)A(﹣1,6)代入反比例函數(shù)(m≠0)得:m=﹣1×6=﹣6,∴.將B(a,﹣2)代入得:,a=1,∴B(1,﹣2),將A(﹣1,6),B(1,﹣2)代入一次函數(shù)y1=kx+b得:,∴,∴;(2)由函數(shù)圖象可得:x<﹣1或0<x<1.本題考查反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.22、(1)證明見解析;(2).【分析】(1)如圖,連接OD.欲證BC是⊙O切線,只需證明OD⊥BC即可.(2)過點(diǎn)D作DE⊥AB,根據(jù)角平分線的性質(zhì)可知CD=DE=3,由勾股定理得到BE的長,再通過設(shè)未知數(shù)利用勾股定理得出AC的長.【詳解】(1)證明:如解圖1所示,連接.平分.,,,,,,,是的切線;(2)如解圖2,過作于,又平分,,,,,在中,,由勾股定理,得,設(shè),則,在中,則由勾股定理,得:,解得:,的長為.本題綜合性較強(qiáng),既考查了切線的判定,要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.同時考查了角平分線的性質(zhì),勾股定理.23、(1);(2)能.【分析】(1)過點(diǎn)作于點(diǎn),然后在兩個直角三角形中通過三角函數(shù)分別計算出AE、AC即可;(2)算出總路程求出汽車行駛的時間,加上等紅綠燈的時間即為總時間,即可作出判斷.【詳解】解:(1)過點(diǎn)作于點(diǎn).依題意有:,,,則,∵,∴,∴(2)總用時為:分鐘分鐘,∴能規(guī)定時間前到達(dá).本題考查了三角函數(shù)的應(yīng)用,把非直角三角形的問題通過作輔助線化為直角三角形的問題是解題關(guān)鍵.24、(1);(2)見解析.【分析】(1)已知C、BD分別是∠BAD、∠ABC的平分線,根據(jù)角平分線的定義可得∠DAC=∠BAC,∠ABD=∠DBC,又因AE?//?BF,根據(jù)平行線的性質(zhì)可得∠DAB+∠CBA=180°,即可得∠BAC+∠ABD=90°,∠AOD=90°;(2)根據(jù)平行線的性質(zhì)和角平分線的定義易證AB=BC,AB=AD,即可得AD=BC,再由AD?//?BC,根據(jù)一組對邊平行且相等的四邊形為平行四邊形可得四邊形ABCD是平行四邊形,再根據(jù)一組鄰邊相等的平行四邊形為菱形即可判定四邊形ABCD是菱形.【詳解】∵、分別是、的平分線,∴,,∵,∴,∴,∴;證明:∵,∴,,∵、分別是、的平分線,∴,,∴,,∴,,∴,∵,∴四邊形是平行四邊形,∵,∴四邊形是菱形.本題考查了平行線的性質(zhì)、角平分線的定義、等腰三角形的判定及性質(zhì)、菱形的判定,證明四邊形ABCD是平行四邊形是解決本題的關(guān)鍵.25、(1)x1=1,x2=1;(2)x>2;(1)k<2;(4).【分析】(1)利用二次函數(shù)與x軸的交點(diǎn)坐標(biāo)與對應(yīng)一元二次方程的解的關(guān)系即可寫出;(2)由圖像可知,在對稱軸的右側(cè),y隨x的增大而減?。唬?)方程ax2+bx+c=k有兩個不相等的實(shí)數(shù)根,即函數(shù)y=ax2+bx+c(a≠0)與y=k有兩個交點(diǎn),畫圖分析即可;’(4)由圖像可知:該拋物線的頂點(diǎn)是(2,2),過(1,0),設(shè)拋物線解析式為:,把(1,0)代入,求出a即可.【詳解】解:(1)當(dāng)y=0時,函數(shù)圖象與x軸的兩個交點(diǎn)的橫坐標(biāo)即為方程ax2+bx+c=0的兩個根,由圖可知,方程的兩個根為x1=1,x2=1.故答案為:x1=1,x2=1.(2)根據(jù)函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論