解析卷-人教版8年級數學下冊《平行四邊形》定向訓練試題(含詳細解析)_第1頁
解析卷-人教版8年級數學下冊《平行四邊形》定向訓練試題(含詳細解析)_第2頁
解析卷-人教版8年級數學下冊《平行四邊形》定向訓練試題(含詳細解析)_第3頁
解析卷-人教版8年級數學下冊《平行四邊形》定向訓練試題(含詳細解析)_第4頁
解析卷-人教版8年級數學下冊《平行四邊形》定向訓練試題(含詳細解析)_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學下冊《平行四邊形》定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,已知在正方形ABCD中,厘米,,點E在邊AB上,且厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上以a厘米/秒的速度由C點向D點運動,設運動時間為t秒.若存在a與t的值,使與全等時,則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或22、已知直線,點P在直線l上,點,點,若是直角三角形,則點P的個數有()A.1個 B.2個 C.3個 D.4個3、如圖,在矩形ABCD中,點E是BC的中點,連接AE,點F是AE的中點,連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.544、如圖,矩形ABCD的對角線AC和BD相交于點O,若∠AOD=120°,AC=16,則AB的長為()A.16 B.12 C.8 D.45、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對6、如圖,正方形的面積為256,點F在上,點E在的延長線上,的面積為200,則的長為()A.10 B.11 C.12 D.157、平行四邊形OABC在平面直角坐標系中的位置如圖所示,∠AOC=45°,OA=OC=,則點B的坐標為()A.(,1) B.(1,) C.(+1,1) D.(1,+1)8、如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FC交AD于點E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.59、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點M,N分別為線段BC,AB上的動點(含端點,但點M不與點B重合),點E,F分別為DM,MN的中點,則EF長度的最大值為()A. B. C. D.10、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數為()A.36° B.30° C.27° D.18°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、七巧板被西方人稱為“東方魔術”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.2、如圖,在中,,,,為上的兩個動點,且,則的最小值是________.3、如圖,在四邊形ABCD中,AD//BC,∠B=90°,DE⊥BC于點E,AB=8cm,AD=24cm,BC=26cm,點P從點A出發(fā),沿邊AD以1cm/s的速度向點D運動,與此同時,點Q從點C出發(fā),沿邊CB以3cm/s的速度向點B運動.當其中一個動點到達端點時,另一個動點也隨之停止運動.連接PQ,過點P作PF⊥BC于點F,則當運動到第__________s時,△DEC≌△PFQ.4、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過點A的直線l折疊,使點D落到AB邊上的點處,折痕交CD邊于點E.若點P是直線l上的一個動點,則+PB的最小值_______.5、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.6、在四邊形ABCD中,AB=BC=CD=DA=5cm,對角線AC,BD相交于點O,且AC=8cm,則四邊形ABCD的面積為______cm2.7、如圖,正方形ABCD的邊長為做正方形,使A,B,C,D是正方形各邊的中點;做正方形,使是正方形各邊的中點……以此類推,則正方形的邊長為__________.8、如圖,在矩形紙片ABCD中,AB=6,BC=4,點E是AD的中點,點F是AB上一動點將AEF沿直線EF折疊,點A落在點A′處在EF上任取一點G,連接GC,,,則的周長的最小值為________.9、如圖,矩形ABCD的兩條對角線AC,BD交于點O,∠AOB=60°,AB=3,則矩形的周長為_____.10、如圖,已知在矩形中,,,將沿對角線AC翻折,點B落在點E處,連接,則的長為_________.三、解答題(5小題,每小題6分,共計30分)1、如圖所示,正方形中,點E,F分別為BC,CD上一點,點M為EF上一點,,M關于直線AF對稱.

(1)求證:B,M關于AE對稱;(2)若的平分線交AE的延長線于G,求證:.2、如圖,在銳角△ABC內部作出一個菱形ADEF,使∠A為菱形的一個內角,頂點D、E、F分別落在AB、BC、CA邊上.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)3、如圖,在?ABCD中,對角線AC的垂直平分線EF交AD于點F,交BC于點E,交AC于點O.求證:四邊形AECF是菱形.(小海的證明過程)證明:∵EF是AC的垂直平分線,∴OA=OC,OE=OF,EF⊥AC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴四邊形AECF是菱形.(老師評析)小海利用對角線互相平分證明了四邊形AECF是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.(挑錯改錯)(1)請你幫小海找出錯誤的原因;(2)請你根據小海的思路寫出此題正確的證明過程.

4、如圖,∠ACB=90°,CD⊥AB于點D,AF平分∠CAB交CD于點E,交BC于點F,作EG∥AB交CB于點G.(1)求證:△CEF是等腰三角形;(2)求證:CF=BG;(3)若F是CG的中點,EF=1,求AB的長.5、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.-參考答案-一、單選題1、D【解析】【分析】根據題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進行求解即可.【詳解】解:當,即點Q的運動速度與點P的運動速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運動時間t=4÷2=2(秒);當,即點Q的運動速度與點P的運動速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點P,Q運動的時間t=(秒).綜上t的值為2.5或2.故選:D.【點睛】本題主要考查正方形的性質以及全等三角形的判定,解決問題的關鍵是掌握正方形的四條邊都相等,四個角都是直角;兩邊及其夾角分別對應相等的兩個三角形全等.同時要注意分類思想的運用.2、C【解析】【分析】分別討論,,三種情況,求出點坐標即可得出答案.【詳解】如圖,當時,點與點橫坐標相同,代入中得:,,當時,點與點橫坐標相同,,代入中得:,,當時,取中點為點,過點作交于點,設,,,,,,,,,在中,,解得:,,點有3個.故選:C.【點睛】本題考查直角三角形的性質與平面直角坐標系,掌握分類討論的思想是解題的關鍵.3、C【解析】【分析】過點F作,分別交于M、N,由F是AE中點得,根據,計算即可得出答案.【詳解】如圖,過點F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點E是BC的中點,∴,∵F是AE中點,∴,∴.故選:C.【點睛】本題考查矩形的性質與三角形的面積公式,掌握是解題的關鍵.4、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點睛】本題考查了矩形的性質,等邊三角形的性質和判定,熟練掌握矩形的性質是本題的關鍵.5、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關鍵在于能夠熟練掌握三角形中位線定理.6、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據△CEF的面積計算CE,根據正方形ABCD的面積計算BC,根據勾股定理計算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因為Rt△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據勾股定理得:BE==12.故選:C.【點睛】本題考查了正方形,等腰直角三角形面積的計算,考查了直角三角形中勾股定理的運用,本題中求證CF=CE是解題的關鍵.7、C【解析】【分析】作,求得、的長度,即可求解.【詳解】解:作,如下圖:則在平行四邊形中,,∴∴為等腰直角三角形則,解得∴故選:C【點睛】此題考查了平行四邊形的性質,等腰直角三角形的性質以及勾股定理,解題的關鍵是靈活運用相關性質進行求解.8、B【解析】【分析】利用折疊的性質可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進而可得出AE=CE,根據矩形性質可得AB=CD=4,BC=AD=8,∠D=90°,設AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質,∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點睛】本題考查了翻折變換、矩形的性質、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關鍵.9、A【解析】【分析】根據三角形的中位線定理得出EF=DN,從而可知DN最大時,EF最大,因為N與B重合時DN最大,此時根據勾股定理求得DN,從而求得EF的最大值.連接DB,過點D作DH⊥AB交AB于點H,再利用直角三角形的性質和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時,EF最大,∴N與B重合時DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質,利用中位線求得EF=DN是解題的關鍵.10、B【解析】【分析】根據已知條件可得以及的度數,然后求出各角的度數便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點睛】題目主要考查矩形的性質,三角形內角和及等腰三角形的性質,理解題意,綜合運用各個性質是解題關鍵.二、填空題1、4【解析】【分析】設陰影小正方形的邊長為xcm,根據陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進而得出大正方形的對角線的長度是4xcm,最后求出邊長a即可.【詳解】解:設陰影小正方形的邊長為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長為cm,則大正方形的對角線長為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點睛】本題主要考查七巧板的知識,熟練掌握七巧板各邊的關系是解題的關鍵.2、【解析】【分析】過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,三點D、M、A′共線時,最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點D、M、A′共線時,A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點睛】本題主要考查了等腰三角形的性質,平行四邊形的判定與性質,勾股定理等知識,構造平行四邊形將AN轉化為DM是解題的關鍵.3、6或7【解析】【分析】分兩種情況進行討論,當在點的右側時,在點的左側時,根據△DEC≌△PFQ,可得,求解即可.【詳解】解:由題意可得,四邊形、為矩形,,、∴,∵△DEC≌△PFQ∴當在點的右側時,∴,解得當在點的左側時,∴,解得故答案為:或【點睛】此題考查了全等三角形的性質,矩形的判定與性質,解題的關鍵是根據題意,求得對應線段的長,分情況討論列方程求解.4、【解析】【分析】不管P點在l上哪個位置,PD始終等于PD',故求PD'+PB可以轉化成求PD+PB,顯然當D、P、D'共線時PD+PB最短.【詳解】過點D作DM⊥AB交BA的延長線于點M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點D與點D′關于直線l對稱,連接BD交直線l于點P,此時PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點睛】本題考查平行四邊形性質和菱形性質,掌握這些是本題解題關鍵.5、8【解析】【分析】根據正方形的軸對稱的性質可得陰影部分的面積等于正方形的面積的一半,然后列式進行計算即可得解.【詳解】解:×4×4=8.故答案為:8.【點睛】本題考查正方形的性質,軸對稱的性質,將陰影面積轉化為三角形面積是解題的關鍵,學會于轉化的思想思考問題.6、24【解析】【分析】根據題意作圖,得出四邊形為菱形,再根據菱形的性質進行求解面積即可.【詳解】解:根據題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點睛】本題考查了菱形的判定及形,勾股定理,解題的關鍵是判斷四邊形是菱形.7、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長,再根據勾股定理求出和的長,找出規(guī)律,即可得出正方形的邊長.【詳解】解:∵A,B,C,D是正方形各邊的中點∴,∵正方形ABCD的邊長為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長為故答案為:.【點睛】本題考查了正方形性質、勾股定理的應用,解此題的關鍵是能根據計算結果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.8、【解析】【分析】連接AC交EF于G,連接A′G,此時△CGA′的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當CA′最小時,△CGA′的周長最小,求出CA′的最小值即可解決問題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質可知A′G=GA,此時△A′GC的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長的最小值+CA′,當CA′最小時,△CGA′的周長最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長的最小值為2-2,故答案為:.【點睛】本題考查翻折變換,矩形的性質,勾股定理,最短路徑問題等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考填空題中的壓軸題.9、##【解析】【分析】根據矩形性質得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長是AB+BC+CD+AD=6+6.故答案為:6+6.【點睛】本題考查了矩形性質,等邊三角形的性質和判定,勾股定理等知識點,關鍵是求出AD的長.10、【解析】【分析】過點E作EF⊥AD于點F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點E作EF⊥AD于點F,有折疊的性質可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點睛】本題主要考查矩形的性質,折疊的性質,勾股定理,等腰三角形的判定定理,添加輔助線構造直角三角形,是解題的關鍵.三、解答題1、(1)見解析;(2)見解析【分析】(1)由已知可證,,即可得證;(2)由上述結論可得,再證△AFG為等腰直角三角形.【詳解】解:連結AM,DM,BM,

∵D、M關于直線AF對稱,∴AF垂直平分DM,∴AD=AM,FD=FM,∴△DAF≌△MAF,∴∠AMF=∠ADF=∠AME=∠ABE=90°,AM=AB,AE=AE,∴△BAE≌△MAE,∴EM=EB,∴AE垂直平分BM,∴B、M關于AE對稱;(2)由(1)知△BAE≌△MAE,∴AE平分∠BEF,∴∠EAF=∠BAD=45°,又AF平分∠DFE,FG平分∠EFC,∴∠AFG=90°.∴△AFG為等腰直角三角形,∴.【點睛】本題是四邊形綜合題,主要考查了軸對稱的性質,等腰直角三角形的判定,勾股定理,三角形的面積等知識,綜合性較強,有一定難度.準確作出輔助線是解題的關鍵.有關45°角的問題,往往利用全等,構造等腰直角三角形,使問題迅速獲解.2、見解析【分析】根據基本作圖先作∠BAC的平分線AE,交BC于E,再利用基本作圖作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,則菱形ADEF為所求,然后證明即可.【詳解】解:先作∠BAC的平分線AE,交BC于E,作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,證明:∵DF是AE的垂直平分線,∴AD=DE,AF=EF,∴∠DEA=∠DAE,∠FAE=∠FEA,∵AE平分∠BAC,∴∠DAE=∠FAE,∴∠DEA=∠DAE=∠FAE,∠FEA=∠FAE=∠DAE,∴DE∥AF,EF∥AD,∴四邊形ADEF為平行四邊形,∵AD=DE,∴四邊形ADEF為菱形,

如圖,則菱形ADEF就是所求作的圖形.【點睛】本題考查尺規(guī)作菱形,基本作圖角平分線,線段垂直平分線,掌握尺規(guī)作菱形的方法,基本作圖角平分線,線段垂直平分線,菱形判定是解題關鍵.3、(1)見解析;(2)見解析【分析】(1)由垂直平分線的性質可求解;(2)由“”可證,可得,且,,由菱形的判定可證四邊形是菱形.【詳解】解:(1)是的垂直平分線,,,不能得出;(2)四邊形是平行四邊形,.是的垂直平分線,,,且,,且四邊形是平行四邊形.四邊形是菱形.【點睛】本題考查了菱形的判定,全等三角形的判定和性質,線段垂直平分線的性質,平行四邊形的性質,解題的關鍵是熟練運用線段垂直平分線的性質.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論