




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、下列說法中,不正確的是()A.四個角都相等的四邊形是矩形B.對角線互相平分且平分每一組對角的四邊形是菱形C.正方形的對角線所在的直線是它的對稱軸D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形2、如圖,在菱形中,P是對角線上一動點,過點P作于點E.于點F.若菱形的周長為24,面積為24,則的值為()A.4 B. C.6 D.3、如圖所示,公路AC、BC互相垂直,點M為公路AB的中點,為測量湖泊兩側(cè)C、M兩點間的距離,若測得AB的長為6km,則M、C兩點間的距離為()A.2.5km B.4.5km C.5km D.3km4、如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.45、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對6、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.7、如圖,在四邊形中,AB∥CD,添加下列一個條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.8、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.139、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點C作CJ⊥DE于點J,交AB于點K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個10、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在矩形紙片ABCD中,AB=6,BC=4,點E是AD的中點,點F是AB上一動點將AEF沿直線EF折疊,點A落在點A′處在EF上任取一點G,連接GC,,,則的周長的最小值為________.2、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內(nèi)壁離底部0.1m的點處有一只蚊子,此時一只壁虎正好在容器的頂部點處,若容器壁厚忽略不計,則壁虎捕捉蚊子的最短路程是______m.3、一個矩形的兩條對角線所夾的銳角是60°,這個角所對的邊長為10cm,則該矩形的面積為_______.4、如圖,在?ABCD中,點E是對角線AC上一點,過點E作AC的垂線,交邊AD于點P,交邊BC于點Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.5、如圖,在矩形ABCD中,對角線AC,BD相交于點O,AB=6,∠DAC=60°,點F在線段AO上從點A至點O運動,連接DF,以DF為邊作等邊三角形DFE,點E和點A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點E運動的路程是2,其中正確結(jié)論的序號為_____.6、若一個菱形的兩條對角線的長為3和4,則菱形的面積為___________.7、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點,過點E作EF⊥AB于點F,EG⊥BC于點G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.8、一個三角形三邊長之比為4∶5∶6,三邊中點連線組成的三角形的周長為30cm,則原三角形最大邊長為_________cm.9、如圖,矩形ABCD的兩條對角線AC,BD交于點O,∠AOB=60°,AB=3,則矩形的周長為_____.10、如圖,M,N分別是矩形ABCD的邊AD,AB上的點,將矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.三、解答題(5小題,每小題6分,共計30分)1、如圖,在菱形ABCD中,點E,F(xiàn)分別是邊AB和BC上的點,且BE=BF.求證:∠DEF=∠DFE.
2、如圖,ABCD的對角線AC、BD相交于點O,BD12cm,AC6cm,點E在線段BO上從點B以1cm/s的速度向點O運動,點F在線段OD上從點O以2cm/s的速度向點D運動.
(1)若點E、F同時運動,設(shè)運動時間為t秒,當(dāng)t為何值時,四邊形AECF是平行四邊形.(2)在(1)的條件下,當(dāng)AB為何值時,AECF是菱形;(3)求(2)中菱形AECF的面積.3、如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形.(1)在圖1中,畫一個三邊長都是有理數(shù)的直角三角形;(2)在圖2中,畫一個以BC為斜邊的直角三角形,使它們的三邊長都是無理數(shù)且都不相等;(3)在圖3中,畫一個正方形,使它的面積是10.4、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點F,在線段上截取,使.(2)連接,求證:四邊形是菱形.5、如圖,是的中位線,延長到,使,連接.求證:.
-參考答案-一、單選題1、D【解析】【分析】根據(jù)矩形的判定,正方形的性質(zhì),菱形和平行四邊形的判定對各選項分析判斷后利用排除法求解.【詳解】解:A、四個角都相等的四邊形是矩形,說法正確;B、正方形的對角線所在的直線是它的對稱軸,說法正確;C、對角線互相平分且平分每一組對角的四邊形是菱形,說法正確;D、一組對邊相等且平行的四邊形是平行四邊形,原說法錯誤;故選:D.【點睛】本題主要考查特殊平行四邊形的判定與性質(zhì),熟練掌握特殊平行四邊形相關(guān)的判定與性質(zhì)是解答本題的關(guān)鍵.2、A【解析】【分析】連接BP,通過菱形的周長為24,求出邊長,菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過面積法得出等量關(guān)系.3、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M(jìn)為AB的中點,∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點間的距離為3km,故選:D.【點睛】本題考查了直角三角形的性質(zhì),解題關(guān)鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.4、D【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結(jié)合①可得AG=GF,根據(jù)等高的兩個三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結(jié)論的是4個.故選:D.【點睛】本題考查了圖形的翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計算,有一定的難度.5、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.6、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.7、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.8、D【解析】【分析】由菱形的性質(zhì)和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點睛】本題考查了菱形的性質(zhì)、勾股定理等知識,熟練掌握菱形的性質(zhì),由勾股定理求出AB=13是解題的關(guān)鍵.9、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點B作BM⊥IA,交IA的延長線于點M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點C作CN⊥DA交DA的延長線于點N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點B作BM⊥IA,交IA的延長線于點M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點C作CN⊥DA交DA的延長線于點N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯誤;綜上,共有3個正確的結(jié)論,故選:C.【點睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.10、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.二、填空題1、【解析】【分析】連接AC交EF于G,連接A′G,此時△CGA′的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當(dāng)CA′最小時,△CGA′的周長最小,求出CA′的最小值即可解決問題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時△A′GC的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長的最小值+CA′,當(dāng)CA′最小時,△CGA′的周長最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長的最小值為2-2,故答案為:.【點睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問題等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考填空題中的壓軸題.2、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內(nèi)壁離底部0.1m的點B處有一只蚊子,此時一只壁虎正好在容器的頂部點A處,∴,,,過點B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點睛】本題主要考查了平面展開—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.3、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).4、【解析】【分析】利用平行四邊形的知識,將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長度,即可求解;【詳解】過點A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點共線時,的最小,∵,,∴,在中,;故答案是:.【點睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準(zhǔn)確計算是解題的關(guān)鍵.5、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點F在線段AO上從點A至點O運動時,點E從點O沿線段運動到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點F在線段AO上從點A至點O運動時,點E從點O沿線段運動到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點E運動的路程是,故結(jié)論④正確;故答案為:①②③④.【點睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識點,熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.6、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進(jìn)行計算即可.【詳解】解:菱形的面積.故答案為:6.【點睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.7、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點E為AC上一動點,當(dāng)DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點E為AC上一動點,∴根據(jù)垂線段最短,當(dāng)DE⊥AC時,DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.8、24【解析】【分析】由三邊長之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長求出三中位線長,推出邊長,再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長∴故填24.【點睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.9、##【解析】【分析】根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長是AB+BC+CD+AD=6+6.故答案為:6+6.【點睛】本題考查了矩形性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識點,關(guān)鍵是求出AD的長.10、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點睛】本題考查折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.三、解答題1、見解析【分析】根據(jù)菱形的性質(zhì)可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS證明△ADE≌△CDF得到DE=DF,則∠DEF=∠DFE.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C,∵BE=BF,∴AB-BE=BC-BF,即AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴∠DEF=∠DFE.【點睛】本題主要考查了菱形的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握菱形的性質(zhì).2、(1)t=2s;(2)AB=;(3)24【分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2026學(xué)年吉林省四平市鐵西區(qū)某中學(xué)高二上學(xué)期開學(xué)英語試卷(解析版)
- 2025年河北邢臺內(nèi)丘縣人力資源和社會保障局就業(yè)見習(xí)245個崗位考前自測高頻考點模擬試題及答案詳解(易錯題)
- 2025湖北武漢市中南財經(jīng)政法大學(xué)教師招錄模擬試卷及答案詳解(全優(yōu))
- 企業(yè)文化建設(shè)方案模板跨行業(yè)
- 2025內(nèi)蒙古鄂爾多斯市水發(fā)燃?xì)庥邢薰菊衅?人模擬試卷及完整答案詳解1套
- 《初中物理力學(xué)平衡原理及其應(yīng)用教案》
- 2025貴州安順學(xué)院高層次人才引進(jìn)考前自測高頻考點模擬試題及答案詳解(必刷)
- 2025湖南懷化市溆浦縣衛(wèi)健局招聘鄉(xiāng)鎮(zhèn)衛(wèi)生院編外專技人員20人考前自測高頻考點模擬試題附答案詳解(突破訓(xùn)練)
- 企業(yè)知識產(chǎn)權(quán)保護(hù)登記及維護(hù)方案
- 2025黑龍江齊齊哈爾市訥河市發(fā)展和改革局所屬事業(yè)單位選調(diào)9人考前自測高頻考點模擬試題及答案詳解(歷年真題)
- 木質(zhì)素降解微生物促進(jìn)秸稈飼料化營養(yǎng)價值提升的機制研究
- 深圳2025中考英語真題及答案
- 全科醫(yī)學(xué)進(jìn)修匯報
- 六年級下學(xué)期英語期末考試質(zhì)量分析
- 三基培訓(xùn)及知識課件
- 監(jiān)控運維:方案與實施
- 河南歷史課件
- 全國青少年“學(xué)憲法、講憲法”知識競賽題庫及答案
- 單元四-一般道路駕駛(教案)
- 油庫消防培訓(xùn)課件
- 2025年華醫(yī)網(wǎng)選修課(廣東省衛(wèi)生系統(tǒng)繼續(xù)教育-選修課18學(xué)時)考試答案
評論
0/150
提交評論