基礎(chǔ)強(qiáng)化人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》達(dá)標(biāo)測(cè)試試卷(詳解版)_第1頁
基礎(chǔ)強(qiáng)化人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》達(dá)標(biāo)測(cè)試試卷(詳解版)_第2頁
基礎(chǔ)強(qiáng)化人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》達(dá)標(biāo)測(cè)試試卷(詳解版)_第3頁
基礎(chǔ)強(qiáng)化人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》達(dá)標(biāo)測(cè)試試卷(詳解版)_第4頁
基礎(chǔ)強(qiáng)化人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》達(dá)標(biāo)測(cè)試試卷(詳解版)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》達(dá)標(biāo)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點(diǎn)P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長(zhǎng)是()A.6 B.3 C.2 D.2、如圖,正三角形PMN的頂點(diǎn)分別是正六邊形ABCDEF三邊的中點(diǎn),則三角形PMN與六邊形ABCDEF的面積之比()A.1:2 B.1:3 C.2:3 D.3:83、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o4、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.5、如圖,一段公路的轉(zhuǎn)彎處是一段圓弧,則的展直長(zhǎng)度為()A.3π B.6π C.9π D.12π6、如圖,矩形中,,,,分別是,邊上的動(dòng)點(diǎn),,以為直徑的與交于點(diǎn),.則的最大值為(

).A.48 B.45 C.42 D.407、如圖,是的內(nèi)接三角形,,是直徑,,則的長(zhǎng)為()A.4 B. C. D.8、如圖,點(diǎn)A,B的坐標(biāo)分別為,點(diǎn)C為坐標(biāo)平面內(nèi)一點(diǎn),,點(diǎn)M為線段的中點(diǎn),連接,則的最大值為()A. B. C. D.9、如圖,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中線,點(diǎn)E、F同時(shí)從點(diǎn)D出發(fā),以相同的速度分別沿DC、DB方向移動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí),運(yùn)動(dòng)停止,直線AE分別與CF、BC相交于G、H,則在點(diǎn)E、F移動(dòng)過程中,點(diǎn)G移動(dòng)路線的長(zhǎng)度為(

)A.2 B.π C.2π D.π10、已知一個(gè)三角形的三邊長(zhǎng)分別為5、7、8,則其內(nèi)切圓的半徑為()A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,圓錐的母線長(zhǎng)為10cm,高為8cm,則該圓錐的側(cè)面展開圖(扇形)的弧長(zhǎng)為_____cm.(結(jié)果用π表示)2、如圖,正方形ABCD的邊長(zhǎng)為2a,E為BC邊的中點(diǎn),的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為.3、如圖,圓錐的母線長(zhǎng)OA=6,底面圓的半徑為,一只小蟲在圓線底面的點(diǎn)A處繞圓錐側(cè)面一周又回到點(diǎn)A處,則小蟲所走的最短路程為___________(結(jié)果保留根號(hào))4、如圖所示的網(wǎng)格由邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成,點(diǎn)、、、在直角坐標(biāo)系中的坐標(biāo)分別為,,,則內(nèi)心的坐標(biāo)為______.5、如圖,AB是⊙O的直徑,C是⊙O上的點(diǎn),過點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D.若∠A=32°,則∠D=_____度.6、如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,1)、B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸于點(diǎn)C、D,則CD的長(zhǎng)是____.7、已知圓錐的高為4cm,母線長(zhǎng)為5cm,則圓錐的側(cè)面積為_____cm2.8、如圖,在的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,其中A、B、C為格點(diǎn),作的外接圓,則的長(zhǎng)等于_____.9、已知圓錐的底面半徑為,側(cè)面展開圖的圓心角是180°,則圓錐的高是______.10、圓錐的底面半徑為3,側(cè)面積為,則這個(gè)圓錐的母線長(zhǎng)為________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,點(diǎn)C是射線上的動(dòng)點(diǎn),四邊形是矩形,對(duì)角線交于點(diǎn)O,的平分線交邊于點(diǎn)P,交射線于點(diǎn)F,點(diǎn)E在線段上(不與點(diǎn)P重合),連接,若.(1)證明:(2)點(diǎn)Q在線段上,連接、、,當(dāng)時(shí),是否存在的情形?請(qǐng)說明理由.2、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.3、如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.(1)用配方法將拋物線的解析式化為頂點(diǎn)式:(),并指出頂點(diǎn)M的坐標(biāo);(2)在拋物線的對(duì)稱軸上找點(diǎn)R,使得CR+AR的值最小,并求出其最小值和點(diǎn)R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點(diǎn)P(點(diǎn)P在對(duì)稱軸的左側(cè)),求證:直線MP是⊙N的切線.4、在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn)A,D的坐標(biāo)分別是,其中.(1)若點(diǎn)B在x軸的上方,①,求的長(zhǎng);②,且.證明:四邊形是菱形;(2)拋物線經(jīng)過點(diǎn)B,C.對(duì)于任意的,當(dāng)a,m的值變化時(shí),拋物線會(huì)不同,記其中任意兩條拋物線的頂點(diǎn)為(與不重合),則命題“對(duì)所有的a,b,當(dāng)時(shí),一定不存在的情形.”是否正確?請(qǐng)說明理由.5、(1)課本再現(xiàn):在中,是所對(duì)的圓心角,是所對(duì)的圓周角,我們?cè)跀?shù)學(xué)課上探索兩者之間的關(guān)系時(shí),要根據(jù)圓心O與的位置關(guān)系進(jìn)行分類.圖1是其中一種情況,請(qǐng)你在圖2和圖3中畫出其它兩種情況的圖形,并從三種位置關(guān)系中任選一種情況證明;(2)知識(shí)應(yīng)用:如圖4,若的半徑為2,分別與相切于點(diǎn)A,B,,求的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】如圖,過作于過作于先證明三點(diǎn)共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點(diǎn)共線,為等邊三角形,四邊形是矩形,故選:【考點(diǎn)】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識(shí)是解題的關(guān)鍵.2、D【解析】【分析】連接BE,設(shè)正六邊形的邊長(zhǎng)為a,首先證明△PMN是等邊三角形,分別求出△PMN,正六邊形ABCDEF的面積即可.【詳解】解:連接BE,設(shè)正六邊形的邊長(zhǎng)為a.則AF=a,BE=2a,AF∥BE,∵AP=PB,F(xiàn)N=NE,∴PN=(AF+BE)=1.5a,同理可得PM=MN=1.5a,∴PN=PM=MN,∴△PMN是等邊三角形,∴,故選:D.【考點(diǎn)】本題考查正多邊形與圓,等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.3、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.4、B【解析】【分析】扇形面積公式為:利用公式直接計(jì)算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點(diǎn)】本題考查的是扇形的面積的計(jì)算,掌握扇形的面積的計(jì)算公式是解題的關(guān)鍵.5、B【解析】【詳解】分析:直接利用弧長(zhǎng)公式計(jì)算得出答案.詳解:的展直長(zhǎng)度為:=6π(m).故選B.點(diǎn)睛:此題主要考查了弧長(zhǎng)計(jì)算,正確掌握弧長(zhǎng)公式是解題關(guān)鍵.6、A【解析】【分析】過A點(diǎn)作AH⊥BD于H,連接OM,如圖,先利用勾股定理計(jì)算出BD=75,則利用面積法可計(jì)算出AH=36,再證明點(diǎn)O在AH上時(shí),OH最短,此時(shí)HM有最大值,最大值為24,然后根據(jù)垂徑定理可判斷MN的最大值.【詳解】解:過A點(diǎn)作AH⊥BD于H,連接OM,如圖,在Rt△ABD中,BD=,∵×AH×BD=×AD×AB,∴AH==36,∵⊙O的半徑為26,∴點(diǎn)O在AH上時(shí),OH最短,∵HM=,∴此時(shí)HM有最大值,最大值為:24,∵OH⊥MN,∴MN=2MH,∴MN的最大值為2×24=48.故選:A.【考點(diǎn)】本題考查了垂徑定理:直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。部疾榱司匦蔚男再|(zhì)和勾股定理.7、B【解析】【分析】連接BO,根據(jù)圓周角定理可得,再由圓內(nèi)接三角形的性質(zhì)可得OB垂直平分AC,再根據(jù)正弦的定義求解即可.【詳解】如圖,連接OB,∵是的內(nèi)接三角形,∴OB垂直平分AC,∴,,又∵,∴,∴,又∵AD=8,∴AO=4,∴,解得:,∴.故答案選B.【考點(diǎn)】本題主要考查了圓的垂徑定理的應(yīng)用,根據(jù)圓周角定理求角度是解題的關(guān)鍵.8、B【解析】【分析】如圖所示,取AB的中點(diǎn)N,連接ON,MN,根據(jù)三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時(shí),OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點(diǎn)N,連接ON,MN,三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時(shí),OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點(diǎn),∴ON=,又∵M(jìn)為AC的中點(diǎn),∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關(guān)鍵是確定當(dāng)ON與MN共線時(shí),OM=ON+MN最大.9、D【解析】【分析】【詳解】解:如圖,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,∴∠ADE=∠CDF=90°,CD=AD=DB,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴∠DAE=∠DCF,∵∠AED=∠CEG,∴∠ADE=∠CGE=90°,∴A、C、G、D四點(diǎn)共圓,∴點(diǎn)G的運(yùn)動(dòng)軌跡為弧CD,∵AB=4,ABAC,∴AC=2,∴OA=OC,∵DA=DC,OA=OC,∴DO⊥AC,∴∠DOC=90°,∴點(diǎn)G的運(yùn)動(dòng)軌跡的長(zhǎng)為π.故選:D.10、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見解析),過點(diǎn)A作于D,利用勾股定理可求出AD的長(zhǎng),再根據(jù)三角形內(nèi)切圓的性質(zhì)、三角形的面積公式即可得出答案.【詳解】解:如圖,,內(nèi)切圓O的半徑為,切點(diǎn)為,則過點(diǎn)A作于D,設(shè),則由勾股定理得:則,即解得,即又即解得則內(nèi)切圓的半徑為故選:C.【考點(diǎn)】本題考查了三角形內(nèi)切圓的性質(zhì)、勾股定理等知識(shí)點(diǎn),讀懂題意,正確畫出圖形,并求出AD的長(zhǎng)是解題關(guān)鍵.二、填空題1、【解析】【分析】先求出圓錐的底面半徑,然后根據(jù)圓錐的展開圖為扇形,結(jié)合圓周長(zhǎng)公式進(jìn)行求解即可.【詳解】設(shè)底面圓的半徑為rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案為12π.【考點(diǎn)】本題考查了圓錐的計(jì)算,解答本題的關(guān)鍵是掌握?qǐng)A錐側(cè)面展開圖是個(gè)扇形,要熟練掌握扇形與圓錐之間的聯(lián)系.2、a.【解析】【分析】作DE的中垂線交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,設(shè)GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點(diǎn)】本題主要考查了正方形的性質(zhì)以及相交兩圓的性質(zhì),相交兩圓的連心線(經(jīng)過兩個(gè)圓心的直線),垂直平分兩圓的公共弦.注意:在習(xí)題中常常通過公共弦在兩圓之間建立聯(lián)系.3、6【解析】【分析】利用圓錐的底面周長(zhǎng)等于側(cè)面展開圖的弧長(zhǎng)可得圓錐側(cè)面展開圖的圓心角,求出側(cè)面展開圖中兩點(diǎn)間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長(zhǎng)為2×=3,設(shè)圓錐的側(cè)面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長(zhǎng)就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點(diǎn)】本題考查了圓錐的計(jì)算,考查圓錐側(cè)面展開圖中兩點(diǎn)間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來求是解決本題的突破點(diǎn).4、(2,3)【解析】【分析】根據(jù)A、B、C三點(diǎn)的坐標(biāo)建立如圖所示的坐標(biāo)系,計(jì)算出△ABC各邊的長(zhǎng)度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點(diǎn)G的坐標(biāo),證出點(diǎn)A與點(diǎn)G關(guān)于BD對(duì)稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點(diǎn)M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點(diǎn)M,過點(diǎn)M作ME⊥AB,過點(diǎn)M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點(diǎn)M的坐標(biāo).【詳解】解:根據(jù)A、B、C三點(diǎn)的坐標(biāo)建立如圖所示的坐標(biāo)系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當(dāng)y=0時(shí),x=3,即G(3,0),∴點(diǎn)A與點(diǎn)G關(guān)于BD對(duì)稱,射線BD是∠ABC的平分線,設(shè)點(diǎn)M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點(diǎn)M,過點(diǎn)M作ME⊥AB,過點(diǎn)M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點(diǎn)】本題考查三角形內(nèi)心、平面直角坐標(biāo)系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識(shí)點(diǎn),把握內(nèi)心是三角形內(nèi)接圓的圓心這個(gè)概念,靈活運(yùn)用各種知識(shí)求解即可.5、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計(jì)算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點(diǎn)睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.6、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點(diǎn)】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.7、15π【解析】【分析】首先利用勾股定理求得圓錐的底面半徑,然后利用圓錐的側(cè)面積=π×底面半徑×母線長(zhǎng),把相應(yīng)數(shù)值代入即可求解.【詳解】解:根據(jù)題意,圓錐的底面圓的半徑==3(cm),所以圓錐的側(cè)面積=π×3×5=15π(cm2).故答案為:15π.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),圓錐的側(cè)面積等于“π×底面半徑×母線長(zhǎng)”.8、【解析】【分析】由AB、BC、AC長(zhǎng)可推導(dǎo)出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計(jì)算出OB的長(zhǎng)就能利用弧長(zhǎng)公式求出的長(zhǎng)了.【詳解】∵每個(gè)小方格都是邊長(zhǎng)為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長(zhǎng)為:=故答案為:.【考點(diǎn)】本題考查了弧長(zhǎng)的計(jì)算以及圓周角定理,解題關(guān)鍵是利用三角形三邊長(zhǎng)通過勾股定理逆定理得出△ACB為等腰直角三角形.9、【解析】【分析】設(shè)圓錐的母線長(zhǎng)為Rcm,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng)和弧長(zhǎng)公式得到2π?5=,然后解方程即可得母線長(zhǎng),然后利用勾股定理求得圓錐的高即可.【詳解】解:設(shè)圓錐的母線長(zhǎng)為Rcm,根據(jù)題意得2π?5=,解得R=10.即圓錐的母線長(zhǎng)為10cm,∴圓錐的高為:(cm).故答案為:.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).10、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長(zhǎng)即為展開后的弧長(zhǎng),側(cè)面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長(zhǎng)=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點(diǎn)】本題考查圓錐與扇形的結(jié)合,關(guān)鍵在于理解圓錐周長(zhǎng)是扇形弧長(zhǎng),圓錐母線是扇形半徑.三、解答題1、(1)見解析(2)不存在的情形,理由見解析【解析】【分析】(1)根據(jù)矩形的性質(zhì)可得∠DAF=∠CFA,從而得到∠CAF=∠CFA,進(jìn)而AC=CF,再由OB=OC,可得∠OBC=∠OCB,然后根據(jù),可得∠ACF=2∠ECF,即可求證;(2)先假設(shè)DQ=PC,可先證得點(diǎn)A、C、E、D四點(diǎn)共圓,從而得到∠DAE=∠DCE,∠CAE=∠CDE,再由AF平分∠CAD,可得DE=CE,進(jìn)而得到點(diǎn)E在CD的垂直平分線上,再由,可得∠AQC=∠CPQ,從而得到CP=CQ,CQ=DQ,進(jìn)而得到點(diǎn)Q在CD的垂直平分線上,得到AF∥BC,AF交射線于點(diǎn)F相矛盾,即可求解.(1)證明:在矩形ABCD中,AD∥BC,OB=OC,∴∠DAF=∠CFA,∵AF平分∠CAD,∴∠DAF=∠CAF,∴∠CAF=∠CFA,∴AC=CF,∵OB=OC,∴∠OBC=∠OCB,∵,∴2∠ECF+∠OCB=180°,∵∠OCB+∠ACF=180°,∴∠ACF=2∠ECF,∴∠ACE=∠FCE,∴AE=EF;(2)解:不存在PC=DQ,理由如下:假設(shè)DQ=PC,∵四邊形ABCD是矩形,∴∠ADC=90°,由(1)得:AC=CF,AE=EF,∴CE⊥AF,即∠AEC=90°,∴∠AEC=∠ADC=90°,∴點(diǎn)A、C、E、D四點(diǎn)共圓,∴∠DAE=∠DCE,∠CAE=∠CDE,∵AF平分∠CAD,∴∠CAE=∠DAE=∠DCE=∠EDC,∴DE=CE,∴點(diǎn)E在CD的垂直平分線上,∵,∠CPQ=∠EDC+∠DEA,∴∠AQC=∠CPQ,∴CP=CQ,∵CP=DQ,∴CQ=DQ,∴點(diǎn)Q在CD的垂直平分線上,∴EQ⊥CD,即AF⊥CD,∵BC⊥CD,∴AF∥BC,AF交射線于點(diǎn)F相矛盾,∴假設(shè)不成立,原結(jié)論成立,即當(dāng)時(shí),不存在的情形.【考點(diǎn)】本題主要考查了矩形的性質(zhì),等腰三角形的判定和性質(zhì),四點(diǎn)共圓問題,反證法,線段垂直平分線的判定,熟練掌握相關(guān)知識(shí)點(diǎn),利用四點(diǎn)共圓解決問題是解題的關(guān)鍵.2、詳見解析.【解析】【詳解】試題分析:根據(jù)弧相等,則對(duì)應(yīng)的弦相等從而證明AB=AC,則△ABC易證是等邊三角形,然后根據(jù)同圓中弦相等,則對(duì)應(yīng)的圓心角相等即可證得.試題解析:證明:∵,∴AB=AC,△ABC為等腰三角形(相等的弧所對(duì)的弦相等)∵∠ACB=60°∴△ABC為等邊三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所對(duì)的圓心角相等)3、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo);(2)連接BC,則BC與對(duì)稱軸的交點(diǎn)為R,此時(shí)CR+AR的值最??;先求出點(diǎn)A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點(diǎn)R的坐標(biāo);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點(diǎn)P坐標(biāo),再計(jì)算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點(diǎn)式為:,頂點(diǎn)M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時(shí),,解得x=1或6,∴A(1,0),B(6,0),∵x=0時(shí),y=﹣3,∴C(0,﹣3).連接BC,則BC與對(duì)稱軸x=的交點(diǎn)為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點(diǎn)之間線段最短可知此時(shí)CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點(diǎn)坐標(biāo)為(,);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項(xiàng)得,,得:,整理得:,解得(與A重合,舍去),,(在對(duì)稱軸的右側(cè),舍去),(與B重合,舍去),∴點(diǎn)P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點(diǎn)P在⊙N上,∴直線MP是⊙N的切線.考點(diǎn):1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.4、(1)①4;②(2)命題正確,證明見解析【解析】【分析】(1)①根據(jù)平行四邊形中AD=BC計(jì)算即可;②根據(jù)距離公式證明AD=AB即可說明四邊形是菱形;(2)由BC=AD求出B的橫坐標(biāo),再在解析式中求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論