




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,OA⊥OB,OB=4,P是射線OA上一動(dòng)點(diǎn),連接BP,以B為直角頂點(diǎn)向上作等腰直角三角形,在OA上取一點(diǎn)D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運(yùn)動(dòng)時(shí),PD的長度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變2、如圖,把矩形紙片沿對(duì)角線折疊,若重疊部分為,那么下列說法錯(cuò)誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對(duì)稱圖形 D.折疊后和相等3、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.4、菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.85、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)H的位置,折痕為EF,則△ABE的面積為()A.6cm2 B.8cm2 C.10cm2 D.12cm2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在矩形紙片ABCD中,AB=6,BC=4,點(diǎn)E是AD的中點(diǎn),點(diǎn)F是AB上一動(dòng)點(diǎn)將AEF沿直線EF折疊,點(diǎn)A落在點(diǎn)A′處在EF上任取一點(diǎn)G,連接GC,,,則的周長的最小值為________.2、如圖,在矩形中,,,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn),重合),將△沿折疊,使得點(diǎn)落在處,當(dāng)△為等腰三角形時(shí),的長為___________.3、如圖,在正方形紙片ABCD中,E是CD的中點(diǎn),將正方形紙片折疊,點(diǎn)B落在線段AE上的點(diǎn)G處,折痕為AF.若,則CF的長為_____.4、如圖,在中,,點(diǎn)、、分別是三邊的中點(diǎn),且,則的長度是__________.5、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內(nèi)壁離底部0.1m的點(diǎn)處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)處,若容器壁厚忽略不計(jì),則壁虎捕捉蚊子的最短路程是______m.三、解答題(5小題,每小題10分,共計(jì)50分)1、在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥AB,交BC于點(diǎn)E,連接AE,取AE的中點(diǎn)P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明;若不成立,請(qǐng)說明理由.(3)問題解決:若BC=3BD=3,將圖(1)中的△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),當(dāng)BE⊥AB時(shí),請(qǐng)直接寫出線段CP的長.2、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),D,M關(guān)于直線AF對(duì)稱.連結(jié)DM并延長交AE的延長線于N,求證:.3、我們知道正多邊形的定義是:各邊相等,各角也相等的多邊形叫做正多邊形.(1)如圖①,在各邊相等的四邊形ABCD中,當(dāng)AC=BD時(shí),四邊形ABCD正四邊形;(填“是”或“不是”)(2)如圖②,在各邊相等的五邊形ABCDE中,AC=CE=EB=BD=DA,求證:五邊形ABCDE是正五邊形;(3)如圖③,在各邊相等的五邊形ABCDE中,減少相等對(duì)角線的條數(shù)也能判定它是正五邊形,問:至少需要幾條對(duì)角線相等才能判定它是正五邊形?請(qǐng)說明理由.4、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點(diǎn)F,過點(diǎn)F作線段AD的垂線交AD于點(diǎn)M;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數(shù)量關(guān)系,并證明你的結(jié)論.5、如圖,中,.(1)作點(diǎn)A關(guān)于的對(duì)稱點(diǎn)C;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)所作的圖中,連接,,連接,交于點(diǎn)O.求證:四邊形是菱形.-參考答案-一、單選題1、D【解析】【分析】過點(diǎn)作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過點(diǎn)作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長度保持不變,故選:D.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.2、D【解析】【分析】根據(jù)題意結(jié)合圖形可以證明EB=ED,進(jìn)而證明△ABE≌△CDE;此時(shí)可以判斷選項(xiàng)A、B、D是成立的,問題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對(duì)稱圖形;綜上所述,選項(xiàng)A、B、C成立,∴不能證明D是正確的,故說法錯(cuò)誤的是D,故選:D.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用翻折變換的性質(zhì),找出圖中隱含的等量關(guān)系;借助矩形的性質(zhì)、全等三角形的判定等幾何知識(shí)來分析、判斷、推理或解答.3、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)中位線定理可得對(duì)角線AC的長,再由菱形面積等于對(duì)角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.5、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點(diǎn)與點(diǎn)重合,,,根據(jù)勾股定理得:,解得:..故選:A.【點(diǎn)睛】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.二、填空題1、【解析】【分析】連接AC交EF于G,連接A′G,此時(shí)△CGA′的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當(dāng)CA′最小時(shí),△CGA′的周長最小,求出CA′的最小值即可解決問題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時(shí)△A′GC的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長的最小值+CA′,當(dāng)CA′最小時(shí),△CGA′的周長最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長的最小值為2-2,故答案為:.【點(diǎn)睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,屬于中考填空題中的壓軸題.2、或【解析】【分析】根據(jù)題意分,,三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點(diǎn)落在處,∴,,設(shè),則①當(dāng)時(shí),如圖過點(diǎn)作,則四邊形為矩形,在中在中即解得②當(dāng)時(shí),如圖,設(shè)交于點(diǎn),設(shè)垂直平分在中即在中,即聯(lián)立,解得③當(dāng)時(shí),如圖,又垂直平分垂直平分此時(shí)重合,不符合題意綜上所述,或故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類討論是解題的關(guān)鍵.3、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運(yùn)用題目中的條件表示出EF列出方程式解題的關(guān)鍵.4、【解析】【分析】根據(jù)中位線定理可得的長度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長度.【詳解】解:∵點(diǎn)、、分別是三邊的中點(diǎn),且∴∵∴故答案為:【點(diǎn)睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關(guān)鍵.5、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內(nèi)壁離底部0.1m的點(diǎn)B處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)A處,∴,,,過點(diǎn)B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點(diǎn)睛】本題主要考查了平面展開—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.三、解答題1、(1)PD=PC,PD⊥PC;(2)成立,見解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關(guān)系即可,即可求解;(2)過點(diǎn)P作PT⊥AB交BC的延長線于T,交AC于點(diǎn)O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當(dāng)點(diǎn)E在BC的上方時(shí)和當(dāng)點(diǎn)E在BC的下方時(shí),過點(diǎn)P作PQ⊥BC于Q,利用等腰直角三角形的性質(zhì)求得,即可求解.【詳解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵點(diǎn)P為AE的中點(diǎn),∴,∴,,∴,∴故答案為:,.(2)結(jié)論成立.理由如下:過點(diǎn)P作PT⊥AB交BC的延長線于T,交AC于點(diǎn)O.則∴,∴,,由勾股定理可得:∴∴∴∵點(diǎn)P為AE的中點(diǎn),∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如圖3﹣1中,當(dāng)點(diǎn)E在BC的上方時(shí),過點(diǎn)P作PQ⊥BC于Q.則,∴∵∴由(2)可得,,,∴為等腰直角三角形∴∴由勾股定理得,如圖3﹣2中,當(dāng)點(diǎn)E在BC的下方時(shí),同法可得PC=PD=2.綜上所述,PC的長為4或2.【點(diǎn)睛】此題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì),做輔助線,構(gòu)造出全等三角形.2、見解析【分析】連結(jié),由對(duì)稱的性質(zhì)可知,進(jìn)而可證,即可得,由∠AON=90°,可得.【詳解】證明:連結(jié),、關(guān)于對(duì)稱,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【點(diǎn)睛】本題是四邊形綜合題,主要考查了軸對(duì)稱的性質(zhì),等腰直角三角形的判定,全等三角形的判定與性質(zhì),綜合性較強(qiáng),有一定難度.準(zhǔn)確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.3、(1)是;(2)見解析;(3)至少需要3條對(duì)角線相等才能判定它是正五邊形,見解析【分析】(1)根據(jù)對(duì)角線相等的菱形是正方形,證明即可;(2)由SSS證明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出結(jié)論;(3)由SSS證明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS證明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四邊形ABCE內(nèi)角和為360°得出∠ABC+∠ECB=180°,證出AB∥CE,由平行線的性質(zhì)得出∠ABE=∠BEC,∠BAC=∠ACE,證出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出結(jié)論;【詳解】(1)解:結(jié)論:四邊形ABCD是正四邊形.理由:∵AB=BC=CD=DA,∴四邊形ABCD是菱形,∵AC=BD,∴四邊形ABCD是正方形.∴四邊形ABCD是正四邊形.故答案為:是.(2)證明:∵凸五邊形ABCDE的各條邊都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、△EAB中,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五邊形ABCDE是正五邊形;(3)解:結(jié)論:至少需要3條對(duì)角線相等才能判定它是正五邊形.若AC=BE=CE,五邊形ABCDE是正五邊形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四邊形ABCE內(nèi)角和為360°,∴∠ABC+∠EC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 九年級(jí)英語下冊(cè) Unit 1 Asia Grammar說課稿 (新版)牛津版
- 2025年中國封瓶蠟珠行業(yè)市場(chǎng)分析及投資價(jià)值評(píng)估前景預(yù)測(cè)報(bào)告
- 課題2 原子的構(gòu)成教學(xué)設(shè)計(jì)初中化學(xué)八年級(jí)全一冊(cè)人教版(五四學(xué)制)
- 2.5一元二次方程的根與系數(shù)的關(guān)系教學(xué)設(shè)計(jì)2023-2024學(xué)年數(shù)學(xué)北師大版九年級(jí)上冊(cè)
- 高級(jí)月嫂考試題庫及答案
- 皋城中學(xué)預(yù)考試卷及答案
- 欣賞 西班牙舞曲教學(xué)設(shè)計(jì)初中音樂七年級(jí)下冊(cè)(2024)人音版(2024 主編:趙季平杜永壽)
- 口罩廠培訓(xùn)課件
- 第20課 清朝君主專制的強(qiáng)化2023-2024學(xué)年七年級(jí)下冊(cè)歷史同步說課稿
- 五年級(jí)信息技術(shù)上冊(cè) 收發(fā)電子郵件說課稿 魯教版
- 2025年中醫(yī)師承及確有專長考核真題(附答案)
- 2025廣東廣州市白云區(qū)民政局招聘窗口服務(wù)崗政府雇員1人筆試模擬試題及答案解析
- 2025年湖南大學(xué)事業(yè)編制管理輔助崗位招聘58人筆試備考題庫及答案解析
- 2025年西藏國家公務(wù)員考錄《行測(cè)》真題及參考答案
- 熱管安全培訓(xùn)課件
- 河南省重點(diǎn)高中2025-2026學(xué)年高一上學(xué)期開學(xué)檢測(cè)語文試題及答案
- 農(nóng)業(yè)遙感耕地資源調(diào)查方案
- 人工智能+金融科技經(jīng)濟(jì)增長趨勢(shì)研究報(bào)告
- 可靠的出租吊籃施工方案
- 2025年度東營市專業(yè)技術(shù)人員繼續(xù)教育公需科目試卷含答案
- (2025年標(biāo)準(zhǔn))分包意向協(xié)議書
評(píng)論
0/150
提交評(píng)論