




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025方差與標(biāo)準(zhǔn)差測試題及參考答案一、單選題1.一組數(shù)據(jù)\(1\),\(2\),\(3\),\(4\),\(5\)的方差是()A.\(1\)B.\(2\)C.\(3\)D.\(4\)答案:B解析:首先求平均數(shù)\(\bar{x}=\frac{1+2+3+4+5}{5}=3\),根據(jù)方差公式\(s^{2}=\frac{1}{n}[(x_{1}-\bar{x})^{2}+(x_{2}-\bar{x})^{2}+\cdots+(x_{n}-\bar{x})^{2}]\),可得\(s^{2}=\frac{1}{5}[(1-3)^{2}+(2-3)^{2}+(3-3)^{2}+(4-3)^{2}+(5-3)^{2}]=\frac{1}{5}(4+1+0+1+4)=2\)。2.已知樣本數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(4\),則數(shù)據(jù)\(2x_{1}+3\),\(2x_{2}+3\),\(\cdots\),\(2x_{n}+3\)的方差是()A.\(11\)B.\(9\)C.\(4\)D.\(16\)答案:D解析:若數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(s^{2}\),則\(ax_{i}+b\)(\(i=1,2,\cdots,n\))的方差為\(a^{2}s^{2}\)。已知\(s^{2}=4\),\(a=2\),所以方差為\(2^{2}\times4=16\)。3.若樣本\(1+x_{1}\),\(1+x_{2}\),\(1+x_{3}\),\(\cdots\),\(1+x_{n}\)的平均數(shù)是\(10\),方差為\(2\),則對于樣本\(2+2x_{1}\),\(2+2x_{2}\),\(2+2x_{3}\),\(\cdots\),\(2+2x_{n}\),下列結(jié)論正確的是()A.平均數(shù)為\(20\),方差為\(4\)B.平均數(shù)為\(20\),方差為\(8\)C.平均數(shù)為\(21\),方差為\(8\)D.平均數(shù)為\(21\),方差為\(4\)答案:B解析:已知樣本\(1+x_{1}\),\(1+x_{2}\),\(\cdots\),\(1+x_{n}\)的平均數(shù)\(\bar{y}=10\),方差\(s_{y}^{2}=2\)。對于樣本\(2+2x_{i}=2(1+x_{i})\)(\(i=1,\cdots,n\)),根據(jù)平均數(shù)和方差性質(zhì),新樣本平均數(shù)\(\bar{z}=2\bar{y}=2\times10=20\),方差\(s_{z}^{2}=2^{2}s_{y}^{2}=4\times2=8\)。4.甲、乙兩人在相同條件下各射擊\(10\)次,他們成績的平均數(shù)相同,方差分別是\(s_{甲}^{2}=0.2\),\(s_{乙}^{2}=0.5\),則兩人中成績更穩(wěn)定的是()A.甲B.乙C.一樣穩(wěn)定D.無法確定答案:A解析:方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定。因?yàn)閈(s_{甲}^{2}=0.2\lts_{乙}^{2}=0.5\),所以甲的成績更穩(wěn)定。5.數(shù)據(jù)\(5\),\(7\),\(8\),\(10\),\(12\),\(12\)的標(biāo)準(zhǔn)差是()A.\(1\)B.\(\sqrt{2}\)C.\(2\)D.\(2\sqrt{2}\)答案:D解析:先求平均數(shù)\(\bar{x}=\frac{5+7+8+10+12+12}{6}=9\),再求方差\(s^{2}=\frac{1}{6}[(5-9)^{2}+(7-9)^{2}+(8-9)^{2}+(10-9)^{2}+(12-9)^{2}+(12-9)^{2}]=\frac{1}{6}(16+4+1+1+9+9)=8\),標(biāo)準(zhǔn)差\(s=\sqrt{8}=2\sqrt{2}\)。6.已知一組數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(x_{3}\)的方差為\(4\),則\(2x_{1}-3\),\(2x_{2}-3\),\(2x_{3}-3\)的標(biāo)準(zhǔn)差是()A.\(1\)B.\(2\)C.\(4\)D.\(8\)答案:C解析:已知數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(x_{3}\)的方差\(s_{1}^{2}=4\),對于數(shù)據(jù)\(ax_{i}+b\)(\(i=1,2,3\)),這里\(a=2\),\(b=-3\),其方差\(s_{2}^{2}=a^{2}s_{1}^{2}=2^{2}\times4=16\),標(biāo)準(zhǔn)差\(s=\sqrt{s_{2}^{2}}=\sqrt{16}=4\)。7.若\(1\),\(2\),\(3\),\(x\)的平均數(shù)是\(3\),且\(1\),\(2\),\(3\),\(x\),\(y\)的方差是\(2\),則\(y\)的值是()A.\(3\)B.\(4\)C.\(5\)D.\(6\)答案:C解析:由\(\frac{1+2+3+x}{4}=3\),可得\(x=6\)。又因?yàn)閈(\frac{1+2+3+6+y}{5}=\frac{12+y}{5}\),且方差\(s^{2}=\frac{1}{5}[(1-\frac{12+y}{5})^{2}+(2-\frac{12+y}{5})^{2}+(3-\frac{12+y}{5})^{2}+(6-\frac{12+y}{5})^{2}+(y-\frac{12+y}{5})^{2}]=2\),將\(x=6\)代入解得\(y=5\)。8.一組數(shù)據(jù)\(a-1\),\(a\),\(a+1\),\(a+2\),\(a+3\)的方差為()A.\(1\)B.\(2\)C.\(\sqrt{2}\)D.\(\frac{\sqrt{2}}{2}\)答案:B解析:平均數(shù)\(\bar{x}=\frac{(a-1)+a+(a+1)+(a+2)+(a+3)}{5}=a+1\),方差\(s^{2}=\frac{1}{5}[((a-1)-(a+1))^{2}+(a-(a+1))^{2}+((a+1)-(a+1))^{2}+((a+2)-(a+1))^{2}+((a+3)-(a+1))^{2}]=\frac{1}{5}(4+1+0+1+4)=2\)。9.樣本數(shù)據(jù)\(3\),\(6\),\(a\),\(4\),\(2\)的平均數(shù)是\(5\),則這個(gè)樣本的方差是()A.\(8\)B.\(5\)C.\(3\)D.\(2\)答案:A解析:由\(\frac{3+6+a+4+2}{5}=5\),解得\(a=10\)。平均數(shù)\(\bar{x}=5\),方差\(s^{2}=\frac{1}{5}[(3-5)^{2}+(6-5)^{2}+(10-5)^{2}+(4-5)^{2}+(2-5)^{2}]=\frac{1}{5}(4+1+25+1+9)=8\)。10.已知一組數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差是\(s^{2}\),將這組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都乘以\(k\)(\(k\neq0\)),得到一組新數(shù)據(jù)\(kx_{1}\),\(kx_{2}\),\(\cdots\),\(kx_{n}\),則這組新數(shù)據(jù)的方差是()A.\(s^{2}\)B.\(ks^{2}\)C.\(k^{2}s^{2}\)D.\(\frac{s^{2}}{k^{2}}\)答案:C解析:根據(jù)方差性質(zhì),若數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(s^{2}\),則\(kx_{i}\)(\(i=1,\cdots,n\))的方差為\(k^{2}s^{2}\)。11.已知樣本\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(2\),則樣本\(2x_{1}+5\),\(2x_{2}+5\),\(\cdots\),\(2x_{n}+5\)的方差為()A.\(2\)B.\(4\)C.\(8\)D.\(10\)答案:C解析:根據(jù)方差性質(zhì),若樣本\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(s^{2}\),對于樣本\(ax_{i}+b\)(\(i=1,\cdots,n\)),其方差為\(a^{2}s^{2}\)。這里\(a=2\),\(s^{2}=2\),所以方差為\(2^{2}\times2=8\)。12.若一組數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(x_{3}\)的平均數(shù)是\(3\),則數(shù)據(jù)\(2x_{1}-1\),\(2x_{2}-1\),\(2x_{3}-1\)的平均數(shù)是()A.\(3\)B.\(4\)C.\(5\)D.\(6\)答案:C解析:已知\(\frac{x_{1}+x_{2}+x_{3}}{3}=3\),則\(x_{1}+x_{2}+x_{3}=9\)。數(shù)據(jù)\(2x_{1}-1\),\(2x_{2}-1\),\(2x_{3}-1\)的平均數(shù)\(\bar{y}=\frac{(2x_{1}-1)+(2x_{2}-1)+(2x_{3}-1)}{3}=\frac{2(x_{1}+x_{2}+x_{3})-3}{3}=\frac{2\times9-3}{3}=5\)。13.一組數(shù)據(jù)\(1\),\(3\),\(5\),\(7\),\(9\)的標(biāo)準(zhǔn)差是()A.\(2\)B.\(2\sqrt{2}\)C.\(4\)D.\(4\sqrt{2}\)答案:B解析:平均數(shù)\(\bar{x}=\frac{1+3+5+7+9}{5}=5\),方差\(s^{2}=\frac{1}{5}[(1-5)^{2}+(3-5)^{2}+(5-5)^{2}+(7-5)^{2}+(9-5)^{2}]=\frac{1}{5}(16+4+0+4+16)=8\),標(biāo)準(zhǔn)差\(s=\sqrt{8}=2\sqrt{2}\)。14.已知數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(x_{3}\),\(x_{4}\),\(x_{5}\)的方差為\(2\),則數(shù)據(jù)\(2x_{1}-3\),\(2x_{2}-3\),\(2x_{3}-3\),\(2x_{4}-3\),\(2x_{5}-3\)的方差為()A.\(2\)B.\(4\)C.\(6\)D.\(8\)答案:D解析:根據(jù)方差性質(zhì),若數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(s^{2}\),對于數(shù)據(jù)\(ax_{i}+b\)(\(i=1,\cdots,n\)),其方差為\(a^{2}s^{2}\)。這里\(a=2\),\(s^{2}=2\),所以方差為\(2^{2}\times2=8\)。15.若\(n\)個(gè)數(shù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的平均數(shù)為\(\bar{x}\),方差為\(s^{2}\),則數(shù)據(jù)\(3x_{1}+1\),\(3x_{2}+1\),\(\cdots\),\(3x_{n}+1\)的平均數(shù)和方差分別為()A.\(3\bar{x}+1\),\(9s^{2}\)B.\(3\bar{x}+1\),\(3s^{2}\)C.\(3\bar{x}\),\(9s^{2}\)D.\(3\bar{x}\),\(3s^{2}\)答案:A解析:平均數(shù)\(\bar{y}=\frac{(3x_{1}+1)+(3x_{2}+1)+\cdots+(3x_{n}+1)}{n}=\frac{3(x_{1}+x_{2}+\cdots+x_{n})+n}{n}=3\bar{x}+1\);方差\(s_{y}^{2}=\frac{1}{n}[(3x_{1}+1-(3\bar{x}+1))^{2}+(3x_{2}+1-(3\bar{x}+1))^{2}+\cdots+(3x_{n}+1-(3\bar{x}+1))^{2}]=\frac{1}{n}[9(x_{1}-\bar{x})^{2}+9(x_{2}-\bar{x})^{2}+\cdots+9(x_{n}-\bar{x})^{2}]=9s^{2}\)。16.一組數(shù)據(jù)\(2\),\(4\),\(6\),\(8\),\(10\)的方差是()A.\(6\)B.\(7\)C.\(8\)D.\(9\)答案:C解析:平均數(shù)\(\bar{x}=\frac{2+4+6+8+10}{5}=6\),方差\(s^{2}=\frac{1}{5}[(2-6)^{2}+(4-6)^{2}+(6-6)^{2}+(8-6)^{2}+(10-6)^{2}]=\frac{1}{5}(16+4+0+4+16)=8\)。17.已知樣本數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的標(biāo)準(zhǔn)差為\(4\),則數(shù)據(jù)\(\frac{1}{2}x_{1}-1\),\(\frac{1}{2}x_{2}-1\),\(\cdots\),\(\frac{1}{2}x_{n}-1\)的標(biāo)準(zhǔn)差為()A.\(1\)B.\(2\)C.\(4\)D.\(8\)答案:B解析:已知樣本數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的標(biāo)準(zhǔn)差\(s_{1}=4\),則方差\(s_{1}^{2}=16\)。對于數(shù)據(jù)\(\frac{1}{2}x_{i}-1\)(\(i=1,\cdots,n\)),其方差\(s_{2}^{2}=(\frac{1}{2})^{2}s_{1}^{2}=\frac{1}{4}\times16=4\),標(biāo)準(zhǔn)差\(s_{2}=\sqrt{4}=2\)。18.若一組數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(x_{3}\),\(x_{4}\)的平均數(shù)是\(5\),方差是\(4\),則另一組數(shù)據(jù)\(2x_{1}-3\),\(2x_{2}-3\),\(2x_{3}-3\),\(2x_{4}-3\)的平均數(shù)和方差分別是()A.\(7\),\(16\)B.\(7\),\(8\)C.\(10\),\(16\)D.\(10\),\(8\)答案:A解析:平均數(shù)\(\bar{y}=\frac{(2x_{1}-3)+(2x_{2}-3)+(2x_{3}-3)+(2x_{4}-3)}{4}=\frac{2(x_{1}+x_{2}+x_{3}+x_{4})-12}{4}=2\times5-3=7\);方差\(s_{y}^{2}=2^{2}\times4=16\)。19.一組數(shù)據(jù)\(3\),\(5\),\(7\),\(9\),\(11\)的標(biāo)準(zhǔn)差為()A.\(2\sqrt{2}\)B.\(2\sqrt{3}\)C.\(2\sqrt{5}\)D.\(4\)答案:A解析:平均數(shù)\(\bar{x}=\frac{3+5+7+9+11}{5}=7\),方差\(s^{2}=\frac{1}{5}[(3-7)^{2}+(5-7)^{2}+(7-7)^{2}+(9-7)^{2}+(11-7)^{2}]=\frac{1}{5}(16+4+0+4+16)=8\),標(biāo)準(zhǔn)差\(s=\sqrt{8}=2\sqrt{2}\)。20.已知數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(x_{3}\)的方差為\(s^{2}\),則數(shù)據(jù)\(2x_{1}+1\),\(2x_{2}+1\),\(2x_{3}+1\)的方差為()A.\(s^{2}\)B.\(2s^{2}\)C.\(4s^{2}\)D.\(8s^{2}\)答案:C解析:根據(jù)方差性質(zhì),若數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(s^{2}\),對于數(shù)據(jù)\(ax_{i}+b\)(\(i=1,\cdots,n\)),這里\(a=2\),其方差為\(a^{2}s^{2}=4s^{2}\)。21.若一組數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的平均數(shù)是\(\bar{x}\),方差是\(s^{2}\),則數(shù)據(jù)\(x_{1}+3\),\(x_{2}+3\),\(\cdots\),\(x_{n}+3\)的平均數(shù)和方差分別是()A.\(\bar{x}+3\),\(s^{2}\)B.\(\bar{x}+3\),\(s^{2}+3\)C.\(\bar{x}\),\(s^{2}\)D.\(\bar{x}\),\(s^{2}+3\)答案:A解析:平均數(shù)\(\bar{y}=\frac{(x_{1}+3)+(x_{2}+3)+\cdots+(x_{n}+3)}{n}=\frac{(x_{1}+x_{2}+\cdots+x_{n})+3n}{n}=\bar{x}+3\);方差\(s_{y}^{2}=\frac{1}{n}[((x_{1}+3)-(\bar{x}+3))^{2}+((x_{2}+3)-(\bar{x}+3))^{2}+\cdots+((x_{n}+3)-(\bar{x}+3))^{2}]=\frac{1}{n}[(x_{1}-\bar{x})^{2}+(x_{2}-\bar{x})^{2}+\cdots+(x_{n}-\bar{x})^{2}]=s^{2}\)。22.一組數(shù)據(jù)\(1\),\(2\),\(3\),\(4\),\(5\)的標(biāo)準(zhǔn)差是()A.\(\sqrt{2}\)B.\(2\)C.\(\sqrt{3}\)D.\(3\)答案:A解析:平均數(shù)\(\bar{x}=\frac{1+2+3+4+5}{5}=3\),方差\(s^{2}=\frac{1}{5}[(1-3)^{2}+(2-3)^{2}+(3-3)^{2}+(4-3)^{2}+(5-3)^{2}]=\frac{1}{5}(4+1+0+1+4)=2\),標(biāo)準(zhǔn)差\(s=\sqrt{2}\)。23.已知樣本數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(9\),則數(shù)據(jù)\(3x_{1}-2\),\(3x_{2}-2\),\(\cdots\),\(3x_{n}-2\)的標(biāo)準(zhǔn)差是()A.\(3\)B.\(6\)C.\(9\)D.\(27\)答案:C解析:已知樣本數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差\(s_{1}^{2}=9\),對于數(shù)據(jù)\(3x_{i}-2\)(\(i=1,\cdots,n\)),其方差\(s_{2}^{2}=3^{2}s_{1}^{2}=9\times9=81\),標(biāo)準(zhǔn)差\(s_{2}=\sqrt{81}=9\)。24.若一組數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(x_{3}\)的平均數(shù)是\(4\),方差是\(3\),則數(shù)據(jù)\(2x_{1}-1\),\(2x_{2}-1\),\(2x_{3}-1\)的平均數(shù)和方差分別是()A.\(7\),\(12\)B.\(7\),\(6\)C.\(8\),\(12\)D.\(8\),\(6\)答案:A解析:平均數(shù)\(\bar{y}=\frac{(2x_{1}-1)+(2x_{2}-1)+(2x_{3}-1)}{3}=\frac{2(x_{1}+x_{2}+x_{3})-3}{3}=2\times4-1=7\);方差\(s_{y}^{2}=2^{2}\times3=12\)。25.一組數(shù)據(jù)\(2\),\(4\),\(6\),\(8\)的方差是()A.\(4\)B.\(5\)C.\(6\)D.\(8\)答案:D解析:平均數(shù)\(\bar{x}=\frac{2+4+6+8}{4}=5\),方差\(s^{2}=\frac{1}{4}[(2-5)^{2}+(4-5)^{2}+(6-5)^{2}+(8-5)^{2}]=\frac{1}{4}(9+1+1+9)=5\)。二、多選題1.下列關(guān)于方差和標(biāo)準(zhǔn)差的說法正確的是()A.方差和標(biāo)準(zhǔn)差都是衡量一組數(shù)據(jù)波動(dòng)大小的量B.方差越大,數(shù)據(jù)的波動(dòng)越大C.標(biāo)準(zhǔn)差越大,數(shù)據(jù)的波動(dòng)越大D.方差和標(biāo)準(zhǔn)差都不能為負(fù)數(shù)答案:ABCD解析:方差和標(biāo)準(zhǔn)差都是用來衡量一組數(shù)據(jù)偏離平均數(shù)的程度,即波動(dòng)大小的量,A正確;方差和標(biāo)準(zhǔn)差越大,說明數(shù)據(jù)偏離平均數(shù)越大,即數(shù)據(jù)的波動(dòng)越大,B、C正確;根據(jù)方差和標(biāo)準(zhǔn)差的計(jì)算公式,它們的值都不能為負(fù)數(shù),D正確。2.已知數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(x_{3}\)的方差為\(s^{2}\),則下列說法正確的是()A.數(shù)據(jù)\(x_{1}+1\),\(x_{2}+1\),\(x_{3}+1\)的方差為\(s^{2}\)B.數(shù)據(jù)\(2x_{1}\),\(2x_{2}\),\(2x_{3}\)的方差為\(2s^{2}\)C.數(shù)據(jù)\(2x_{1}+1\),\(2x_{2}+1\),\(2x_{3}+1\)的方差為\(4s^{2}\)D.數(shù)據(jù)\(-x_{1}\),\(-x_{2}\),\(-x_{3}\)的方差為\(s^{2}\)答案:ACD解析:根據(jù)方差性質(zhì),若數(shù)據(jù)\(x_{1}\),\(x_{2}\),\(\cdots\),\(x_{n}\)的方差為\(s^{2}\),則\(x_{i}+b\)(\(i=1,\cdots,n\))的方差為\(s^{2}\),A正確;\(ax_{i}\)(\(i=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷庫項(xiàng)目建設(shè)預(yù)算計(jì)劃表
- 電子商務(wù)物流配送時(shí)效分析報(bào)告
- 高三數(shù)學(xué)聯(lián)考題型分析及備考策略
- 企業(yè)內(nèi)部溝通與協(xié)作高效方案解析
- 大型活動(dòng)禮儀接待工作流程模板
- 醫(yī)療行業(yè)電子病歷數(shù)據(jù)安全保障措施
- 現(xiàn)代室內(nèi)裝修技術(shù)方案及質(zhì)量標(biāo)準(zhǔn)
- 民營企業(yè)人力資源管理案例分析
- 義務(wù)教育督導(dǎo)檢查報(bào)告與分析
- 幼兒園家園共育方案實(shí)施手冊
- 電廠安全學(xué)習(xí)培訓(xùn)課件
- 免疫細(xì)胞治療安全性評價(jià)-第1篇-洞察及研究
- 車間師帶徒管理辦法
- 事業(yè)位協(xié)議班培訓(xùn)合同
- 2025年中國50歲以上成年人益生菌行業(yè)市場全景分析及前景機(jī)遇研判報(bào)告
- 第9課《天上有顆南仁東星》公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 腹部外傷文庫課件
- 醫(yī)院門診急診統(tǒng)籌管理方案
- 胃腸外科醫(yī)生進(jìn)修匯報(bào)
- 2025高級會(huì)計(jì)職稱考試試題及答案
- 貴陽輔警管理辦法
評論
0/150
提交評論