重難點解析人教版8年級數(shù)學上冊《軸對稱》定向練習練習題(解析版)_第1頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》定向練習練習題(解析版)_第2頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》定向練習練習題(解析版)_第3頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》定向練習練習題(解析版)_第4頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》定向練習練習題(解析版)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、若點A(﹣4,m﹣3),B(2n,1)關于x軸對稱,則(

)A.m=2,n=0 B.m=2,n=﹣2 C.m=4,n=2 D.m=4,n=﹣22、如圖,在的正方形網格中有兩個格點A、B,連接,在網格中再找一個格點C,使得是等腰直角三角形,滿足條件的格點C的個數(shù)是(

)A.2 B.3 C.4 D.53、如圖,在小正三角形組成的網格中,已有個小正三角形涂黑,還需涂黑個小正三角形,使它們與原來涂黑的小正三角形組成的新圖案恰有三條對稱軸,則的最小值為()A. B. C. D.4、已知在△ABC中,點P在三角形內部,點P到三個頂點的距離相等,則點P是(

)A.三條角平分線的交點 B.三條高線的交點C.三條中線的交點 D.三條邊垂直平分線的交點5、以下四個標志,每個標志都有圖案和文字說明,其中的圖案是軸對稱圖形是(

)A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、正五邊形ABCDE中,對角線AC、BD相較于點P,則∠APB的度數(shù)為_______.2、如圖,平分,,的延長線交于點,若,則的度數(shù)為__________.3、如圖,在四邊形中,,,,點為邊上一點,連接.,與交于點,且,若,,則的長為_______________.4、點P關于x軸對稱點是,點P關于y軸對稱點是,則__________.5、如圖,BH是鈍角三角形ABC的高,AD是角平分線,且2∠C=90°-∠ABH,若CD=4,ΔABC的面積為12,則AD=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.(1)求證AD=AE;(2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.2、如圖,在中,,的垂直平分線交于,交于.(1)若,則的度數(shù)是;(2)連接,若,的周長是.①求的長;②在直線上是否存在點,使由,,構成的的周長值最?。咳舸嬖?,標出點的位置并求的周長最小值;若不存在,說明理由.3、如圖所示的四個圖形中,從幾何圖形變換的角度考慮,哪一個與其他三個不同?請指出這個圖形,并簡述你的理由.

4、如圖,已知∠AOB,作∠AOB的平分線OC,將直角尺DEMN如圖所示擺放,使EM邊與OB邊重合,頂點D落在OA邊上,DN邊與OC交于點P.(1)猜想DOP是三角形;(2)補全下面證明過程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=5、如圖,在正方形網格上有一個.(1)畫出關于直線的對稱圖形(不寫畫法);(2)若網格上的每個小正方形的邊長為1,求的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)點(x,y)關于x軸對稱的點的坐標為(x,﹣y)即可求得m、n值.【詳解】解:∵點A(﹣4,m﹣3),B(2n,1)關于x軸對稱,∴﹣4=2n,m﹣3=﹣1,解得:n=﹣2,m=2,故選:B.【考點】本題考查了坐標與圖形變換-軸對稱、解一元一次方程,熟練掌握關于坐標軸對稱的的點的坐標特征是解答的關鍵.2、B【解析】【分析】根據(jù)題意,結合圖形,分兩種情況討論:①AB為等腰直角△ABC底邊;②AB為等腰直角△ABC其中的一條腰.【詳解】解:如圖:分情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有0個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有3個.故共有3個點,故選:B.【考點】本題考查了等腰三角形的判定;解答本題關鍵是根據(jù)題意,畫出符合實際條件的圖形,數(shù)形結合的思想是數(shù)學解題中很重要的解題思想.3、C【解析】【分析】由等邊三角形有三條對稱軸可得答案.【詳解】如圖所示,n的最小值為3.故選C.【考點】本題考查了利用軸對稱設計圖案,解題的關鍵是掌握常見圖形的性質和軸對稱圖形的性質.4、D【解析】【分析】根據(jù)線段垂直平分線的性質解答即可.【詳解】解:∵在△ABC中,三角形內部的點P到三個頂點的距離相等,∴點P是三條邊垂直平分線的交點,故選:D.【考點】本題考查了線段垂直平分線的性質,熟練掌握線段垂直平分線上的點到線段的兩個端點的距離相等是解答的關鍵.5、D【解析】【分析】根據(jù)軸對稱圖形的定義判斷即可【詳解】∵A,B,C都不是軸對稱圖形,∴都不符合題意;D是軸對稱圖形,符合題意,故選D.【考點】本題考查了軸對稱圖形的定義,準確理解軸對稱圖形的定義是解題的關鍵.二、填空題1、72°##72度【解析】【分析】根據(jù)正五邊形的性質,可得,AB=BC=CD,從而得到∠ACB=∠CBD=36°,再由三角形外角的性質,即可求解.【詳解】解:∵多邊形ABCDE是正五邊形,∴,AB=BC=CD,∴∠ACB=∠CBD=36°,∴∠APB=∠ACB+∠CBD=72°.故答案為:72°【考點】本題主要考查了正多邊形的性質,等腰三角形的性質,三角形外角的性質,熟練掌握正多邊形的性質,等腰三角形的性質,三角形外角的性質是解題的關鍵.2、【解析】【分析】如圖,連接,延長與交于點利用等腰三角形的三線合一證明是的垂直平分線,從而得到再次利用等腰三角形的性質得到:從而可得答案.【詳解】解:如圖,連接,延長與交于點平分,,是的垂直平分線,故答案為:【考點】本題考查的是等腰三角形的性質,掌握等腰三角形的三線合一是解題的關鍵.3、【解析】【分析】由,知點A,C都在BD的垂直平分線上,因此,可連接交于點,易證是等邊三角形,是等邊三角形,根據(jù)等邊三角形的性質對三角形中的線段進行等量轉換即可求出OB,OC的長度,應用勾股定理可求解.【詳解】解:如圖,連接交于點∵,,,∴垂直平分,是等邊三角形∴,,∵∴,∴∴∴∵∴是等邊三角形∴∴,∴∴【考點】本題主要考查了等邊三角形的判定與性質、勾股定理,綜合運用等邊三角形的判定與性質進行線段間等量關系的轉換是解題的關鍵.4、1【解析】【分析】根據(jù)關于坐標軸的對稱點的坐標特征,求出a,b的值,即可求解.【詳解】∵點P關于x軸對稱點是,∴P(a,-2),∵點P關于y軸對稱點是,∴b=-2,a=3,∴1,故答案是:1.【考點】本題主要考查關于坐標軸對稱的點的坐標特征,熟練掌握“關于x軸對稱的兩點,橫坐標相等,縱坐標互為相反數(shù);關于y軸對稱的兩點,橫坐標互為相反數(shù),縱坐標相等”是解題的關鍵.5、3【解析】【分析】根據(jù)三角形的外角性質和已知條件易證明∠ABC=∠C,則可判斷△ABC為等腰三角形,然后根據(jù)等腰三角形的性質可得AD⊥BC,BD=CD=4,再利用三角形面積公式即可求出AD的長.【詳解】解:∵BH為△ABC的高,∴∠AHB=90°,∴∠BAH=90°﹣∠ABH,而2∠C=90°﹣∠ABH,∴∠BAH=2∠C,∵∠BAH=∠C+∠ABC,∴∠ABC=∠C,∴△ABC為等腰三角形,∵AD是角平分線,∴AD⊥BC,BD=CD=4,∵ΔABC的面積為12,∴×AD×BC=12,即×AD×8=12,∴AD=3.故答案為:3.【考點】本題考查了三角形的外角性質、等腰三角形的判定和性質以及三角形的面積,熟練掌握上述知識是解題的關鍵.三、解答題1、(1)證明見解析;(2)互相垂直,證明見解析【解析】【分析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質推出即可.【詳解】(1)證明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.證明:連接OA、BC,∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在Rt△ADO和Rt△AEO中,∵∴Rt△ADO≌Rt△AEO(HL).∴∠DAO=∠EAO,又∵AB=AC,∴OA⊥BC.2、(1)50°(2)①6cm;②存在點P,點P與點M重合,△PBC周長的最小值為【解析】【分析】(1)根據(jù)等腰三角形的性質得出∠B=∠C=70°,在△ABC中,根據(jù)三角形內角和定理求得∠A=40°,在△AMN中,根據(jù)三角形內角和定理求得∠NMA=50°;(2)①根據(jù)線段垂直平分線可得AM=BM,根據(jù)△MBC的周長=BM+BC+CM=AM+BC+CM即可求解;②根據(jù)對稱軸的性質可知,M點就是點P所在的位置,△PBC的周長最小值就是△MBC的周長.【詳解】解:(1)∵AB=AC,∴∠B=∠C=70°,∴∠A=180°-70°-70°=40°∵MN垂直平分AB交AB于N∴MN⊥AB,∠ANM=90°,在△AMN中,∠NMA=180°-90°-40°=50°;(2)①如圖所示,連接MB,∵MN垂直平分AB交于AB于N∴AM=BM,∴△MBC的周長=BM+BC+CM=AM+BC+CM=BC+AC=又∵AB=AC=8cm,∴BC=14cm-8cm=6cm;②如圖所示,∵MN垂直平分AB,∴點A、B關于直線MN對稱,AC與MN交于點M,因此點P與點M重合;∴△MBC的周長就是△PBC周長的最小值,∴△PBC周長的最小值=△MBC的周長=.【考點】本題考查三角形內角和定理,線段垂直平分線性質,等腰三角形的性質,軸對稱-最短路線問題.解題的關鍵是熟練掌握這些知識點.3、圖(2),僅它不是軸對稱圖形【解析】【詳解】試題分析:觀察圖形發(fā)現(xiàn)(1)(3)(4)都是軸對稱圖形,而(2)不是軸對稱圖形,由此即可得出結論.試題解析:解:(1)(3)(4)都是軸對稱圖形,而(2)不是軸對稱圖形.故從幾何圖形變換的角度考慮,圖(2)與其它三個不同.4、等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD,見解析【解析】【分析】(1)三角形的種類有多種,從邊和角的關系上看常見的有:等腰三角形、等邊三角形、直角三角形、觀察此三角形即可大體猜想出三角形的類型;(2)根據(jù)角平分線的性質和平行線的性質,求得∠DOP=∠DPO,即可判斷三角形的形狀.【詳解】解:(1)我們猜想△DOP是等腰三角形;(2)補全下面證明過程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案為:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.【考點】本題考查了角平分線的性質和平行線的性質及等腰三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論