重難點解析河南省衛(wèi)輝市中考數(shù)學真題分類(勾股定理)匯編章節(jié)訓練試卷(含答案詳解版)_第1頁
重難點解析河南省衛(wèi)輝市中考數(shù)學真題分類(勾股定理)匯編章節(jié)訓練試卷(含答案詳解版)_第2頁
重難點解析河南省衛(wèi)輝市中考數(shù)學真題分類(勾股定理)匯編章節(jié)訓練試卷(含答案詳解版)_第3頁
重難點解析河南省衛(wèi)輝市中考數(shù)學真題分類(勾股定理)匯編章節(jié)訓練試卷(含答案詳解版)_第4頁
重難點解析河南省衛(wèi)輝市中考數(shù)學真題分類(勾股定理)匯編章節(jié)訓練試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

河南省衛(wèi)輝市中考數(shù)學真題分類(勾股定理)匯編章節(jié)訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、在△ABC中,,那么△ABC是(

)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形2、《九章算術(shù)》被尊為古代數(shù)學“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大?。凿忎徶?,深一寸,鋸道長一尺.問徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個木材,鋸口深等于1寸,鋸道長1尺,則圓形木材的直徑是(

)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸3、已知直角三角形紙片的兩條直角邊長分別為m和n(m<n),過銳角頂點把該紙片剪成兩個三角形,若這兩個三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=04、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點D與點B重合,點C落在點H的位置,折痕為EF,則△ABE的面積為(

)A.6cm2 B.8cm2 C.10cm2 D.12cm25、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面0.7m,那么小巷的寬度為(

)A.3.2m B.3.5m C.3.9m D.4m6、如圖,長方體的底面邊長分別為2cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈達到點B,那么所用細線最短需要(

)A.11cm B.2cm C.(8+2)cm D.(7+3)cm7、如圖,在2×2的正方形網(wǎng)格中有9個格點,已經(jīng)取定點A和B,在余下的點中任取一點C,使△ABC為直角三角形的概率是(

)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、已知,在中,,,,則的面積為__.2、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點C到AB的距離是_______.3、在△ABC中,∠C=90°,AB=10,AC=8,則BC的長為_____.4、如圖,△ABC中,∠C=90°,AD平分∠BAC,AB=5,AC=3,則BD的長是__.5、等腰△ABC中,AB=AC=10cm,BC=12cm,則BC邊上的高是_______cm.6、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.7、如圖,滑竿在機械槽內(nèi)運動,∠ACB為直角,已知滑竿AB長2.5米,頂點A在AC上滑動,量得滑竿下端B距C點的距離為1.5米,當端點B向右移動0.5米時,滑竿頂端A下滑________米.8、如圖,某農(nóng)舍的大門是一個木制的長方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對的頂點間用一塊木板加固,則木板的長為________.三、解答題(7小題,每小題10分,共計70分)1、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.2、如圖,某海岸線MN的方向為北偏東75°,甲,乙兩船分別向海島C運送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.3、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計算敵方汽車的速度嗎?4、閱讀下面材料:小明遇到這樣一個問題:∠MBN=30°,點A為射線BM上一點,且AB=4,點C為射線BN上動點,連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當AC⊥BN時,求BD的長.小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長為.(2)動點C在射線BN上運動,當運動到AC時,求BD的長;(3)動點C在射線BN上運動,求△ABD周長最小值.5、閱讀理解:課堂上學習了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學生觀察:3,4,5;5,12,13;7,24,25;9,40,41;……學生發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過,于是王老師提出以下問題讓學生解決.(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11,_________,_________;(2)若第一個數(shù)用字母(為奇數(shù),且)表示,則后兩個數(shù)用含的代數(shù)式分別怎么表示?聰明的小明發(fā)現(xiàn)每組第二個數(shù)有這樣的規(guī)律:,,,……于是他很快表示出了第二個數(shù)為,則用含的代數(shù)式表示第三個數(shù)為_________.(3)用所學知識說明(2)中用表示的三個數(shù)是勾股數(shù).6、如圖,把長方形紙片沿折疊,使點落在邊上的點處,點落在點處.(1)試說明;(2)設,,,試猜想,,之間的關(guān)系,并說明理由.7、如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長均為1.(1)請在所給網(wǎng)格中畫一個邊長分別為,,的三角形;(2)此三角形的面積是.-參考答案-一、單選題1、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.2、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點,則O、C、D三點共線,OC⊥AB,∴AC=BC=AB=5(寸),設圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點】本題主要考查了垂徑定理的應用,勾股定理的應用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.3、C【解析】【分析】如圖,根據(jù)等腰三角形的性質(zhì)和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.4、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點與點重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.5、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點】本題考查了勾股定理的應用,正確理解題意、熟練掌握勾股定理是解題的關(guān)鍵.6、B【解析】【詳解】要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.解:將長方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..7、C【解析】【分析】找到可以組成直角三角形的點,根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點和組成直角三角形.,故選:C.【考點】本題考查了概率公式,解題的關(guān)鍵是掌握如果一個事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結(jié)果,那么事件的概率(A).二、填空題1、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.2、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關(guān)鍵3、6【解析】【分析】根據(jù)勾股定理求解即可.【詳解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC===6故答案為:6.【考點】本題考查勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.4、2.5【解析】【分析】首先先過點D作AB的垂直線段DE,根據(jù)勾股定理把BC求出,然后根據(jù)角平分線的性質(zhì)定理得出DE=DC,再根據(jù)ABC的面積等于ACD的面積加上ABD的面積,把CD求出,最后BD的長度即可求出.【詳解】過點D作DEAB于E,在ABC中,C=,AB=5,AC=3,∴,∵AD平分BAC,∴DE=DC,∵,即,解得CD=1.5,∴BD=4-CD=4-1.5=2.5,故答案為:2.5.【考點】本題考查了勾股定理和角平分線的性質(zhì)定理,正確作出輔助線,根據(jù)面積相等把CD求出是解題的關(guān)鍵.5、8【解析】【詳解】如圖,AD是BC邊上的高線.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案為8.6、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時,勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結(jié)合的思想的應用.7、0.5【解析】【詳解】結(jié)合題意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案為0.5.點睛:本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數(shù)學的關(guān)鍵.8、2.5m【解析】【詳解】設木棒的長為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.三、解答題1、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質(zhì)得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點,∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點】本題考查了勾股定理,等腰三角形的性質(zhì)和判定,全等三角形的判定與性質(zhì)等,能靈活運用勾股定理進行計算是解(1)的關(guān)鍵,能求出∠DCO=∠ABO和OC=OB是解(2)的關(guān)鍵.2、【解析】【分析】過點C作CD⊥AM垂足為D,設CD=x,根據(jù)直角三角形的性質(zhì)求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,進而求得AC的長.【詳解】解:過點C作CD⊥AM垂足為D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,設CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海島C的距離是海里.【考點】本題主要考查了直角三角形的性質(zhì)、勾股定理等知識點,掌握直角三角形的邊角關(guān)系是正確解答的前提,作垂線構(gòu)造直角三角形是解決問題的關(guān)鍵.3、速度為30米每秒【解析】【分析】根據(jù)勾股定理求得的長度,再根據(jù)速度等于路程除以時間即可求得敵方汽車的速度.【詳解】,,米每秒,答:敵方汽車的速度為30米每秒.【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關(guān)鍵.4、(1)ABD,ACE,;(2)BD的長為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長度;(2)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長度,再利用勾股定理即可求出CE的長度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',此時BD+AC'有最小值即為AF,此時△ABD周長=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時BD的長為;(3)解:如圖,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此時BD+AC'有最小值即為AF,∴此時△ABD周長=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此時△ABD周長為:+4.【考點】本題主要考查全等三角形的判定和性質(zhì),勾股定理等,作出合適的輔助

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論