難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)練習(xí)試卷(附答案詳解)_第1頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)練習(xí)試卷(附答案詳解)_第2頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)練習(xí)試卷(附答案詳解)_第3頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)練習(xí)試卷(附答案詳解)_第4頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)練習(xí)試卷(附答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、的周長(zhǎng)為32cm,AB:BC=3:5,則AB、BC的長(zhǎng)分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm2、在中,AC與BD相交于點(diǎn)O,要使四邊形ABCD是菱形,還需添加一個(gè)條件,這個(gè)條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC3、在菱形ABCD中,兩條對(duì)角線AC=10,BD=24,則此菱形的邊長(zhǎng)為()A.14 B.25 C.26 D.134、如圖,點(diǎn)E是長(zhǎng)方形ABCD的邊CD上一點(diǎn),將ADE沿著AE對(duì)折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),若AD=10,AB=8,那么AE長(zhǎng)為()A.5 B.12 C.5 D.135、如圖,矩形ABCD的面積為1cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類(lèi)推,則平行四邊形AO2014C2015B的面積為()cmA.

B.

C.

D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在?ABCD中,點(diǎn)E是對(duì)角線AC上一點(diǎn),過(guò)點(diǎn)E作AC的垂線,交邊AD于點(diǎn)P,交邊BC于點(diǎn)Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為_(kāi)_______________.2、如圖,已知正方形ABCD的邊長(zhǎng)為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM若AE=2,則FM的長(zhǎng)為_(kāi)__.3、如圖,四邊形ABCD是矩形,延長(zhǎng)DA到點(diǎn)E,使AE=DA,連接EB,點(diǎn)F1是CD的中點(diǎn),連接EF1,BF1,得到△EF1B;點(diǎn)F2是CF1的中點(diǎn),連接EF2,BF2,得到△EF2B;點(diǎn)F3是CF2的中點(diǎn),連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進(jìn)行下去,若矩形ABCD的面積等于2,則△EFnB的面積為_(kāi)_____.(用含正整數(shù)n的式子表示)4、如圖,正方形紙片ABCD的邊長(zhǎng)為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長(zhǎng)為_(kāi)_________.5、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線BD上有一動(dòng)點(diǎn)K,則KA+KE的最小值為_(kāi)____________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,正方形ABCD中,點(diǎn)E在BC的延長(zhǎng)線上,AE分別交DC,BD于F,G,點(diǎn)H為EF的中點(diǎn).求證:(1)∠DAG=∠DCG;(2)GC⊥CH.2、如圖,在菱形ABCD中,點(diǎn)E,F(xiàn)分別是邊AB和BC上的點(diǎn),且BE=BF.求證:∠DEF=∠DFE.

3、如圖,四邊形ABCD是平行四邊形,延長(zhǎng)DA,BC,使得AE=CF,連接BE,DF.(1)求證:△ABE≌△CDF;(2)連接BD,若∠1=32°,∠ADB=22°,請(qǐng)直接寫(xiě)出當(dāng)∠ABE=°時(shí),四邊形BFDE是菱形.4、如圖,四邊形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分別為E、F.求證:BE=BF.5、如圖,在中,,D是邊上的一點(diǎn),過(guò)D作交于點(diǎn)E,,連接交于點(diǎn)F.(1)求證:是的垂直平分線;(2)若點(diǎn)D為的中點(diǎn),且,求的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長(zhǎng)為32cm,∴,即,解得:,∴.故選:C【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對(duì)邊相等是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時(shí)平行四邊形,AO⊥BO,∴是菱形;故選C.【點(diǎn)睛】本題主要考查了菱形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.3、D【解析】【分析】由菱形的性質(zhì)和勾股定理即可求得AB的長(zhǎng).【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識(shí),熟練掌握菱形的性質(zhì),由勾股定理求出AB=13是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)矩形的性質(zhì),折疊的性質(zhì),勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對(duì)折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點(diǎn)睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.5、C【解析】【分析】根據(jù)“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進(jìn)行求解.【詳解】解:∵O1為矩形ABCD的對(duì)角線的交點(diǎn),∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對(duì)角線交于點(diǎn)O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類(lèi)推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點(diǎn)睛】本題主要考查矩形的性質(zhì)與平行四邊形的性質(zhì),熟練掌握矩形的性質(zhì)與平行四邊形的性質(zhì)是解題的關(guān)鍵.二、填空題1、【解析】【分析】利用平行四邊形的知識(shí),將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長(zhǎng)度,即可求解;【詳解】過(guò)點(diǎn)A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點(diǎn)共線時(shí),的最小,∵,,∴,在中,;故答案是:.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.2、5【解析】【分析】由旋轉(zhuǎn)性質(zhì)可證明△EDF≌△MDF,從而EF=FM;設(shè)FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉(zhuǎn)的性質(zhì)可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設(shè)EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識(shí),運(yùn)用了方程思想,關(guān)鍵是證明三角形全等.3、.【解析】【分析】由AE=DA,點(diǎn)F1是CD的中點(diǎn),矩形ABCD的面積等于2,結(jié)合矩形的性質(zhì)可得△EF1D和△EAB的面積都等于1,結(jié)合三角形中線的性質(zhì)可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結(jié)論.【詳解】∵AE=DA,點(diǎn)F1是CD的中點(diǎn),矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點(diǎn)F2是CF1的中點(diǎn),∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點(diǎn)睛】本題考查了矩形的性質(zhì),三角形中線的性質(zhì),解題的關(guān)鍵是根據(jù)面積找出規(guī)律.4、##【解析】【分析】由折疊及軸對(duì)稱(chēng)的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長(zhǎng),再利用勾股定理求出BF的長(zhǎng),最后在Rt△ABF中利用面積法可求出AH的長(zhǎng),可進(jìn)一步求出AG的長(zhǎng),GE的長(zhǎng).【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對(duì)稱(chēng)的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱(chēng)的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長(zhǎng)度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對(duì)稱(chēng)的性質(zhì).5、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對(duì)稱(chēng),推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對(duì)稱(chēng),即C關(guān)于BD的對(duì)稱(chēng)點(diǎn)是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱(chēng)-最短路徑問(wèn)題,等邊三角形的性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.三、解答題1、(1)見(jiàn)解析;(2)見(jiàn)解析【分析】(1)要證明,需把兩角放到兩三角形中,證明兩三角形與全等得到,全等的方法是:由為正方形,得到與相等,與相等,再加上公共邊,利用“”得到全等,利用全等三角形的對(duì)應(yīng)角相等得證;(2)要證明與垂直,需證,即,方法是:由正方形的對(duì)邊與平行,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等得到與相等,由(1)得到的與相等,等量代換得到與相等,再由為直角三角形斜邊上的中線,得到與相等都等于斜邊的一半,根據(jù)“等邊對(duì)等角”得到與相等,又等于,等量代換得到,即,得證.【詳解】證明:(1)為正方形,,,,又,,;(2)為正方形,,,又,,為直角三角形斜邊邊的中點(diǎn),,,,又,,即,.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及直角三角形的性質(zhì),以及直角三角形斜邊上的中線等于斜邊的一半,是一道證明題.解題的關(guān)鍵是要求學(xué)生熟練掌握正方形的性質(zhì):四條邊都相等,四個(gè)角相等都為直角,對(duì)角線互相垂直且平分,一條對(duì)角線平分一組對(duì)角.2、見(jiàn)解析【分析】根據(jù)菱形的性質(zhì)可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS證明△ADE≌△CDF得到DE=DF,則∠DEF=∠DFE.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C,∵BE=BF,∴AB-BE=BC-BF,即AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴∠DEF=∠DFE.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握菱形的性質(zhì).3、(1)見(jiàn)解析;(2)12【分析】(1)由“SAS”可證△ABE≌△CDF;

(2)通過(guò)證明BE=DE,可得結(jié)論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,

∴AB=CD,∠BAD=∠BCD,

∴∠1=∠DCF,

在△ABE和△CDF中,,

∴△ABE≌△CDF(SAS);

(2)當(dāng)∠ABE=10°時(shí),四邊形BFDE是菱形,

理由如下:∵△ABE≌△CDF,

∴BE=DF,AE=CF,∵四邊形ABCD是平行四邊形,

∴AD=BC,

∴AD+AE=BC+CF,

∴BF=DE,

∴四邊形BFDE是平行四邊形,

∵∠1=32°,∠ADB=22°,

∴∠ABD=∠1-∠ADB=10°,

∵∠ABE=12°,

∴∠DBE=22°,

∴∠DBE=∠ADB=22°,

∴BE=DE,

∴平行四邊形BFDE是菱形,

故答案為:12.【點(diǎn)睛】本題考查了菱形的判定,平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì),掌握菱形的判定是解題的關(guān)鍵.4、見(jiàn)解析【分析】根據(jù)菱形的性質(zhì),可得AD=DC,AB=BC,∠A=∠C.從而得到△AED≌△CFD.從而得到AE=CF.即可求證.【詳解】證明:∵四邊形ABCD是菱形,∴AD=DC,AB=BC,∠A=∠C.∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∴△AED≌△CFD(AAS).∴AE=CF.∴AB﹣AE=BC﹣CF.即:BE=BF.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握菱形的對(duì)角相等,對(duì)邊相等是解題的關(guān)鍵.5、(1)見(jiàn)解析;(2)6【分析】(1)由BC=BD,可得∠BCD=∠BDC,再由及,可得∠ECD=∠EDC,則有EC=ED,從而可得點(diǎn)B、E在線段CD的垂直平分線上,從而可得結(jié)論;(2)由D點(diǎn)是AB的中點(diǎn)及BC=BD,可得△BDC是等邊三角形,從而由30度的直角三角形的性質(zhì)可分別求得EC、BE,由AE=BE,即可求得AC的長(zhǎng).【詳解】(1)∵BC=BD∴∠BCD=∠BDC,點(diǎn)B在線段CD的垂直平分線上∵,∴∠BCD+∠ECD=∠EDC+∠BDC∴∠ECD=∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論