阿壩師范學(xué)院《數(shù)據(jù)分析與語(yǔ)言》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
阿壩師范學(xué)院《數(shù)據(jù)分析與語(yǔ)言》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
阿壩師范學(xué)院《數(shù)據(jù)分析與語(yǔ)言》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
阿壩師范學(xué)院《數(shù)據(jù)分析與語(yǔ)言》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
阿壩師范學(xué)院《數(shù)據(jù)分析與語(yǔ)言》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共2頁(yè)阿壩師范學(xué)院《數(shù)據(jù)分析與語(yǔ)言》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)降維,假設(shè)數(shù)據(jù)集具有高維度,但其中可能存在冗余和無(wú)關(guān)的特征。為了減少計(jì)算復(fù)雜度并提高分析效率,以下哪種降維方法可能是有效的?()A.主成分分析(PCA),提取主要成分B.線性判別分析(LDA),考慮類別信息C.局部線性嵌入(LLE),保留局部結(jié)構(gòu)D.不進(jìn)行降維,直接處理高維數(shù)據(jù)2、對(duì)于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì)。數(shù)據(jù)涵蓋多個(gè)指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對(duì)比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個(gè)地區(qū)每年的經(jīng)濟(jì)數(shù)據(jù)B.折線圖,呈現(xiàn)每個(gè)地區(qū)經(jīng)濟(jì)數(shù)據(jù)隨時(shí)間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟(jì)占比D.箱線圖,反映數(shù)據(jù)的分布情況3、在進(jìn)行數(shù)據(jù)分析時(shí),需要處理數(shù)據(jù)的不平衡問(wèn)題。假設(shè)要分析信用卡欺詐檢測(cè)數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問(wèn)題時(shí)更能提高模型對(duì)少數(shù)類(欺詐交易)的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.合成少數(shù)類過(guò)采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用4、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的有效性可以通過(guò)多種方式進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)分析方法有效性評(píng)估的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)分析方法的有效性可以通過(guò)與實(shí)際情況進(jìn)行對(duì)比來(lái)評(píng)估B.數(shù)據(jù)分析方法的有效性可以通過(guò)與其他方法進(jìn)行比較來(lái)評(píng)估C.數(shù)據(jù)分析方法的有效性可以通過(guò)模擬數(shù)據(jù)進(jìn)行測(cè)試來(lái)評(píng)估D.數(shù)據(jù)分析方法的有效性一旦確定就不能再進(jìn)行調(diào)整和改進(jìn)5、數(shù)據(jù)分析中的模型評(píng)估指標(biāo)用于衡量模型的性能。假設(shè)要評(píng)估一個(gè)預(yù)測(cè)客戶流失的模型,以下關(guān)于評(píng)估指標(biāo)選擇的描述,正確的是:()A.只關(guān)注準(zhǔn)確率,不考慮其他指標(biāo)如召回率和精確率B.不根據(jù)業(yè)務(wù)需求選擇合適的評(píng)估指標(biāo),隨意使用通用指標(biāo)C.結(jié)合業(yè)務(wù)場(chǎng)景和問(wèn)題的嚴(yán)重性,綜合考慮準(zhǔn)確率、召回率、精確率、F1值、AUC等指標(biāo),評(píng)估模型在不同方面的表現(xiàn),并根據(jù)評(píng)估結(jié)果進(jìn)行優(yōu)化和改進(jìn)D.認(rèn)為模型評(píng)估指標(biāo)越高越好,不考慮指標(biāo)之間的平衡和trade-off6、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析7、數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中項(xiàng)之間的關(guān)聯(lián)關(guān)系。假設(shè)我們要分析超市購(gòu)物籃數(shù)據(jù)。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述,哪一項(xiàng)是錯(cuò)誤的?()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率B.置信度表示在包含前提項(xiàng)集的情況下,包含結(jié)果項(xiàng)集的概率C.提升度大于1表示關(guān)聯(lián)規(guī)則是有效的,小于1表示是無(wú)效的D.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡(jiǎn)單的兩兩關(guān)聯(lián)關(guān)系,不能處理復(fù)雜的關(guān)聯(lián)模式8、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示一個(gè)公司在過(guò)去十年中不同產(chǎn)品的銷售額變化趨勢(shì),同時(shí)要對(duì)比不同地區(qū)的銷售情況。以下哪種數(shù)據(jù)可視化方式最能清晰地呈現(xiàn)這些信息,便于分析和決策?()A.折線圖B.柱狀圖C.餅圖D.箱線圖9、假設(shè)要評(píng)估一個(gè)數(shù)據(jù)分析模型的性能,以下關(guān)于評(píng)估指標(biāo)和方法的描述,正確的是:()A.準(zhǔn)確率是唯一可靠的評(píng)估指標(biāo),能全面反映模型的好壞B.召回率在所有情況下都比精確率更重要C.交叉驗(yàn)證可以有效地避免模型過(guò)擬合,并且能更準(zhǔn)確地評(píng)估模型在不同數(shù)據(jù)子集上的性能D.對(duì)于不平衡數(shù)據(jù)集,使用平衡準(zhǔn)確率來(lái)評(píng)估模型是不合適的10、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法11、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來(lái)值是一個(gè)重要的應(yīng)用。假設(shè)我們有一個(gè)股票價(jià)格的時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來(lái)一段時(shí)間的價(jià)格走勢(shì),以下哪種方法可能較為有效?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上都有可能,取決于數(shù)據(jù)特點(diǎn)12、在構(gòu)建數(shù)據(jù)分析模型時(shí),模型評(píng)估指標(biāo)是衡量模型性能的重要依據(jù)。假設(shè)你建立了一個(gè)客戶流失預(yù)測(cè)模型,以下關(guān)于評(píng)估指標(biāo)的選擇,哪一項(xiàng)是最能反映模型實(shí)際效果的?()A.準(zhǔn)確率,即正確預(yù)測(cè)的比例B.召回率,即正確預(yù)測(cè)流失客戶的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量預(yù)測(cè)值與實(shí)際值的差異13、對(duì)于一組具有明顯層次結(jié)構(gòu)的數(shù)據(jù),以下哪種數(shù)據(jù)分析方法較為合適?()A.層次聚類B.K-Means聚類C.密度聚類D.均值漂移聚類14、在數(shù)據(jù)分析中,如果想要比較兩個(gè)獨(dú)立樣本的均值是否有顯著差異,應(yīng)該使用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.方差分析C.卡方檢驗(yàn)D.秩和檢驗(yàn)15、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和關(guān)聯(lián)規(guī)則,以下哪種算法是常用的?()A.Apriori算法B.KNN算法C.SVM算法D.隨機(jī)森林算法16、在數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)隱私和安全是需要重點(diǎn)關(guān)注的問(wèn)題。假設(shè)我們?cè)谔幚戆瑐€(gè)人敏感信息的數(shù)據(jù),以下哪種措施可以有效地保護(hù)數(shù)據(jù)隱私?()A.數(shù)據(jù)加密B.匿名化處理C.訪問(wèn)控制D.以上都是17、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的選擇很重要。以下關(guān)于數(shù)據(jù)挖掘算法選擇的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘算法的選擇應(yīng)根據(jù)數(shù)據(jù)的特點(diǎn)、分析目的和計(jì)算資源等因素來(lái)確定B.不同的數(shù)據(jù)挖掘算法適用于不同類型的數(shù)據(jù)和問(wèn)題,沒有一種算法是萬(wàn)能的C.選擇數(shù)據(jù)挖掘算法時(shí),可以參考其他類似項(xiàng)目的經(jīng)驗(yàn),但不能完全照搬D.數(shù)據(jù)挖掘算法的選擇只需要考慮算法的準(zhǔn)確性,其他因素如計(jì)算效率等可以忽略不計(jì)18、當(dāng)分析一個(gè)移動(dòng)應(yīng)用的用戶使用數(shù)據(jù),比如使用頻率、功能使用情況、用戶留存率等,以改進(jìn)應(yīng)用的功能和用戶體驗(yàn)。為了增加用戶留存率,以下哪種策略可能是有效的?()A.推出新的功能B.優(yōu)化應(yīng)用的界面設(shè)計(jì)C.加強(qiáng)用戶互動(dòng)和社交元素D.以上都是19、在進(jìn)行數(shù)據(jù)挖掘時(shí),分類算法中的決策樹算法具有易于理解和解釋的優(yōu)點(diǎn)。以下哪個(gè)因素不會(huì)影響決策樹的構(gòu)建?()A.特征選擇B.樣本數(shù)量C.數(shù)據(jù)的缺失值D.計(jì)算資源的大小20、在進(jìn)行數(shù)據(jù)分析項(xiàng)目時(shí),與業(yè)務(wù)部門的有效溝通是至關(guān)重要的。假設(shè)數(shù)據(jù)分析團(tuán)隊(duì)得出的結(jié)論與業(yè)務(wù)部門的預(yù)期不符,以下哪種做法可能是最恰當(dāng)?shù)??()A.堅(jiān)持?jǐn)?shù)據(jù)分析結(jié)果,要求業(yè)務(wù)部門接受B.重新檢查分析過(guò)程,看是否存在錯(cuò)誤C.與業(yè)務(wù)部門深入討論,了解他們的需求和關(guān)注點(diǎn)D.放棄當(dāng)前分析,按照業(yè)務(wù)部門的意見修改結(jié)論21、對(duì)于一個(gè)包含大量數(shù)值型數(shù)據(jù)的數(shù)據(jù)集,若要快速找到數(shù)據(jù)的中位數(shù),以下哪種算法較為高效?()A.排序后取中間值B.基于分治思想的算法C.隨機(jī)選擇算法D.以上算法效率差不多22、在對(duì)一家餐廳的營(yíng)業(yè)數(shù)據(jù)進(jìn)行分析,例如菜品銷售數(shù)量、顧客評(píng)價(jià)、營(yíng)業(yè)時(shí)間段等,以制定營(yíng)銷策略和優(yōu)化菜單。以下哪個(gè)因素可能對(duì)餐廳的盈利能力產(chǎn)生最大影響?()A.熱門菜品的推廣B.營(yíng)業(yè)時(shí)間段的調(diào)整C.菜單的更新和優(yōu)化D.以上都是23、數(shù)據(jù)分析中的生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者的生存時(shí)間。以下關(guān)于生存分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以計(jì)算生存率、中位生存時(shí)間等指標(biāo)B.Cox比例風(fēng)險(xiǎn)模型常用于生存分析中的風(fēng)險(xiǎn)因素評(píng)估C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒有應(yīng)用D.可以考慮協(xié)變量對(duì)生存時(shí)間的影響24、在數(shù)據(jù)分析的地理信息分析中,假設(shè)要分析不同地區(qū)的銷售數(shù)據(jù)與地理因素的關(guān)系。以下哪種技術(shù)或方法可能有助于可視化和理解這種空間關(guān)系?()A.地理信息系統(tǒng)(GIS),繪制地圖和疊加數(shù)據(jù)B.空間自相關(guān)分析,檢測(cè)數(shù)據(jù)的空間依賴性C.克里金插值,估計(jì)未采樣點(diǎn)的值D.不考慮地理因素,僅分析銷售數(shù)據(jù)的數(shù)值特征25、在數(shù)據(jù)分析中,數(shù)據(jù)的可解釋性對(duì)于決策支持很重要。假設(shè)要向管理層解釋一個(gè)預(yù)測(cè)銷售趨勢(shì)的模型結(jié)果,以下關(guān)于數(shù)據(jù)可解釋性方法的描述,正確的是:()A.使用復(fù)雜的數(shù)學(xué)公式和技術(shù)術(shù)語(yǔ),讓管理層難以理解B.不提供任何解釋,讓管理層自行判斷C.采用簡(jiǎn)單直觀的圖表、案例分析和通俗易懂的語(yǔ)言,解釋模型的輸入、輸出和決策依據(jù),幫助管理層做出明智的決策D.認(rèn)為數(shù)據(jù)可解釋性不重要,只要模型預(yù)測(cè)準(zhǔn)確就行26、對(duì)于一個(gè)具有時(shí)間戳的數(shù)據(jù)集合,若要進(jìn)行時(shí)間序列分析,以下哪個(gè)工具或庫(kù)可能會(huì)被使用?()A.PandasB.NumPyC.MatplotlibD.Scikit-learn27、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測(cè)缺失值D.以上方法均可28、在數(shù)據(jù)庫(kù)中,索引可以提高數(shù)據(jù)的查詢效率。以下哪種情況下不適合創(chuàng)建索引?()A.表中數(shù)據(jù)量較小B.經(jīng)常作為查詢條件的字段C.唯一性較差的字段D.頻繁更新的字段29、數(shù)據(jù)分析中的回歸分析常用于預(yù)測(cè)和建模。假設(shè)要建立一個(gè)模型來(lái)預(yù)測(cè)房屋價(jià)格,考慮房屋面積、地理位置、房齡等因素。以下哪種回歸分析方法在處理這種多因素預(yù)測(cè)問(wèn)題時(shí)表現(xiàn)更為出色?()A.線性回歸B.邏輯回歸C.多項(xiàng)式回歸D.嶺回歸30、在進(jìn)行數(shù)據(jù)可視化時(shí),顏色的選擇和使用可以影響可視化的效果。假設(shè)我們要在一個(gè)圖表中區(qū)分不同的類別,以下哪個(gè)關(guān)于顏色選擇的原則是重要的?()A.對(duì)比度高B.符合文化和認(rèn)知習(xí)慣C.考慮色盲人群的可辨識(shí)度D.以上都是二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在醫(yī)療影像診斷中,如何利用數(shù)據(jù)分析來(lái)輔助醫(yī)生進(jìn)行疾病判斷、提高診斷準(zhǔn)確性和效率?請(qǐng)?zhí)接憯?shù)據(jù)分析技術(shù)在醫(yī)療影像領(lǐng)域的應(yīng)用、數(shù)據(jù)的安全性和醫(yī)生的培訓(xùn)需求。2、(本題5分)電商直播行業(yè)的興起帶來(lái)了新的數(shù)據(jù)挑戰(zhàn)和機(jī)遇。以某電商直播平臺(tái)為例,闡述如何運(yùn)用數(shù)據(jù)分析來(lái)評(píng)估主播表現(xiàn)、優(yōu)化直播內(nèi)容、提高觀眾參與度,以及如何利用實(shí)時(shí)互動(dòng)數(shù)據(jù)進(jìn)行精準(zhǔn)營(yíng)銷。3、(本題5分)餐飲行業(yè)可以通過(guò)數(shù)據(jù)分析來(lái)優(yōu)化菜單設(shè)計(jì)、庫(kù)存管理和客戶關(guān)系維護(hù)。以某連鎖餐廳為例,闡述如何利用數(shù)據(jù)分析來(lái)確定熱門菜品、控制食材成本、提高客戶忠誠(chéng)度,以及如何應(yīng)對(duì)季節(jié)和地域因素對(duì)業(yè)務(wù)的影響。4、(本題5分)在旅游酒店行業(yè),客人的預(yù)訂數(shù)據(jù)、入住體驗(yàn)數(shù)據(jù)等不斷增加。探討如何利用數(shù)據(jù)分析方法,比如客戶滿意度分析、收益管理優(yōu)化等,提升酒店的服務(wù)質(zhì)量和經(jīng)營(yíng)效益,同時(shí)研究在數(shù)據(jù)季節(jié)性波動(dòng)大、客戶需求個(gè)性化和競(jìng)爭(zhēng)對(duì)手?jǐn)?shù)據(jù)獲取方面所面臨的困難及解決途徑。5、(本題5分)在制造業(yè)的供應(yīng)鏈管理中,數(shù)據(jù)分析可以提高效率和降低成本。以某電子制造企業(yè)為例,分析如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化原材料采購(gòu)、生產(chǎn)計(jì)劃安排、物流配送,以及如何應(yīng)對(duì)供應(yīng)鏈中斷的風(fēng)險(xiǎn)和快速恢復(fù)。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的物化視圖的概念和作用,說(shuō)明在什么情況下使用物化視圖來(lái)提高查詢性能,并舉例說(shuō)明。2、(本題5分)解釋什么是聯(lián)邦學(xué)習(xí),說(shuō)明其在數(shù)據(jù)隱私保護(hù)和分布式計(jì)算中的應(yīng)用場(chǎng)景和優(yōu)勢(shì),并舉例分析。3、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的異常傳播分析,包括異常的擴(kuò)散路徑、影響范圍等方面的分析方法和應(yīng)用。4、(本題5分)闡述數(shù)據(jù)可視化中的可視化敘事,說(shuō)明如何通過(guò)數(shù)據(jù)可視

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論