




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣德縣2024-2025學年中考數學仿真試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.甲、乙兩盒中分別放入編號為1、2、3、4的形狀相同的4個小球,從甲盒中任意摸出一球,再從乙盒中任意摸出一球,將兩球編號數相加得到一個數,則得到數()的概率最大.A.3 B.4 C.5 D.62.如圖,⊙O是等邊△ABC的外接圓,其半徑為3,圖中陰影部分的面積是()A.π B. C.2π D.3π3.如圖,圓O是等邊三角形內切圓,則∠BOC的度數是()A.60° B.100° C.110° D.120°4.關于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實數根,則m的取值范圍是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<25.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.16.如圖,四邊形ABCD內接于⊙O,F是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數為()A.45° B.50° C.55° D.60°7.如果,那么代數式的值是()A.6 B.2 C.-2 D.-68.如圖,從正方形紙片的頂點沿虛線剪開,則∠1的度數可能是()A.44 B.45 C.46 D.479.如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,
將剪下的扇形作為一個圓錐側面,如果圓錐的高為,則這塊圓形紙片的直徑為(
)A.12cm B.20cm C.24cm D.28cm10.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F,給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,DM垂直平分AC,交BC于點D,連接AD,若∠C=28°,AB=BD,則∠B的度數為_____度.12.在3×3方格上做填字游戲,要求每行每列及對角線上三個方格中的數字和都相等,若填在圖中的數字如圖所示,則x+y的值是_____.2x32y﹣34y13.如圖,在直角坐標系中,點A(2,0),點B(0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.14.不透明的袋子里裝有2個白球,1個紅球,這些球除顏色外無其他差別,從袋子中隨機摸出1個球,則摸出白球的概率是________.15.已知點A(4,y1),B(,y2),C(-2,y3)都在二次函數y=(x-2)2-1的圖象上,則y1,y2,y3的大小關系是.16.一次函數y=(k﹣3)x﹣k+2的圖象經過第一、三、四象限.則k的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.18.(8分)已知,數軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數為,點B表示的數為.(1)若A、B移動到如圖所示位置,計算的值.(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應的數,并計算.(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.19.(8分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.求證:AE與⊙O相切于點A;若AE∥BC,BC=2,AC=2,求AD的長.20.(8分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.21.(8分)關于x的一元二次方程ax2+bx+1=1.(1)當b=a+2時,利用根的判別式判斷方程根的情況;(2)若方程有兩個相等的實數根,寫出一組滿足條件的a,b的值,并求此時方程的根.22.(10分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.23.(12分)先化簡,再求值:,其中24.先化簡,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】解:甲和乙盒中1個小球任意摸出一球編號為1、2、3、1的概率各為,其中得到的編號相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.2、D【解析】
根據等邊三角形的性質得到∠A=60°,再利用圓周角定理得到∠BOC=120°,然后根據扇形的面積公式計算圖中陰影部分的面積即可.【詳解】∵△ABC為等邊三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴圖中陰影部分的面積==3π.故選D.本題考查了三角形的外接圓與外心、圓周角定理及扇形的面積公式,求得∠BOC=120°是解決問題的關鍵.3、D【解析】
由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).4、D【解析】
根據一元二次方程的根的判別式的意義得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2)>0,解得m>且m≠﹣2,再利用根與系數的關系得到,m﹣2≠0,解得<m<2,即可求出答案.【詳解】解:由題意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實數根,∴﹣>0,m﹣2≠0,∴<m<2,∵m>,∴<m<2,故選:D.本題主要考查對根的判別式和根與系數的關系的理解能力及計算能力,掌握根據方程根的情況確定方程中字母系數的取值范圍是解題的關鍵.5、C【解析】
延長BC′交AB′于D,根據等邊三角形的性質可得BD⊥AB′,利用勾股定理列式求出AB,然后根據等邊三角形的性質和等腰直角三角形的性質求出BD、C′D,然后根據BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.熟練掌握勾股定理以及由旋轉60°得到△ABB′是等邊三角形是解本題的關鍵.6、B【解析】
先根據圓內接四邊形的性質求出∠ADC的度數,再由圓周角定理得出∠DCE的度數,根據三角形外角的性質即可得出結論.【詳解】∵四邊形ABCD內接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.本題考查圓內接四邊形的性質,圓周角定理.圓內接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.7、A【解析】【分析】將所求代數式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.8、A【解析】
連接正方形的對角線,然后依據正方形的性質進行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.本題主要考查的是正方形的性質,熟練掌握正方形的性質是解題的關鍵.9、C【解析】
設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質得到AB=R,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.10、C【解析】
利用“角邊角”證明△APE和△CPF全等,根據全等三角形的可得AE=CF,再根據等腰直角三角形的定義得到△EFP是等腰直角三角形,根據全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,根據同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據線段垂直平分線上的點到兩端點的距離相等可得AD=CD,等邊對等角可得∠DAC=∠C,三角形的一個外角等于與它不相鄰的兩個內角的和求出∠ADB=∠C+∠DAC,再次根據等邊對等角可得可得∠ADB=∠BAD,然后利用三角形的內角和等于180°列式計算即可得解.【詳解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°?∠BAD?∠ADB=180°?56°?56°=1°.故答案為1.本題考查了等腰三角形的性質,線段垂直平分線上的點到兩端點的距離相等的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,三角形的內角和定理,熟記各性質與定理是解題的關鍵.12、0【解析】
根據題意列出方程組,求出方程組的解即可得到結果.【詳解】解:根據題意得:,即,解得:,則x+y=﹣1+1=0,故答案為0此題考查了解二元一次方程組,熟練掌握運算法則是解本題的關鍵.13、【解析】∵點A(2,0),點B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.設AC=m,PC=2m,.當點P在x軸的上方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).當點P在x軸的下方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P點坐標為或(4,4)或或(0,4)【點睛】本題考察了相似三角形的判定,相似三角形的性質,平面直角坐標系點的坐標及分類討論的思想.在利用相似三角形的性質列比例式時,要找好對應邊,如果對應邊不確定,要分類討論.因點P在x軸上方和下方得到的結果也不一樣,所以要分兩種情況求解.請在此填寫本題解析!14、【解析】
先求出球的總數,再根據概率公式求解即可.【詳解】∵不透明的袋子里裝有2個白球,1個紅球,∴球的總數=2+1=3,∴從袋子中隨機摸出1個球,則摸出白球的概率=.故答案為.本題考查的是概率公式,熟知隨機事件A的概率P(A)=事件A可能出現的結果數所有可能出現的結果數的商是解答此題的關鍵.15、y3>y1>y2.【解析】試題分析:將A,B,C三點坐標分別代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考點:二次函數的函數值比較大小.16、k>3【解析】分析:根據函數圖象所經過的象限列出不等式組通過解該不等式組可以求得k的取值范圍.詳解:∵一次函教y=(k?3)x?k+2的圖象經過第一、三、四象限,∴解得,k>3.故答案是:k>3.點睛:此題主要考查了一次函數圖象,一次函數的圖象有四種情況:
①當時,函數的圖象經過第一、二、三象限;
②當時,函數的圖象經過第一、三、四象限;
③當時,函數的圖象經過第一、二、四象限;
④當時,函數的圖象經過第二、三、四象限.三、解答題(共8題,共72分)17、證明見解析.【解析】試題分析:首先根據等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質與判定,平行線的性質18、(1)a+b的值為2;(2)a的值為3,b|a|的值為3;(1)b比a大27.1.【解析】
(1)根據數軸即可得到a,b數值,即可得出結果.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2,即可求解.(1)點A不動,點B向右移動15.1個單位長,所以a=10,b=17.1,再b-a即可求解.【詳解】(1)由圖可知:a=10,b=2,∴a+b=2故a+b的值為2.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2∴b|a|=b+a=23=3故a的值為3,b|a|的值為3.(1)∵點A不動,點B向右移動15.1個單位長∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.本題主要考查了數軸,關鍵在于數形結合思想.19、(1)證明見解析;(2)AD=2.【解析】
(1)如圖,連接OA,根據同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結論;(2)先證明OA⊥BC,由垂徑定理得:,FB=BC,根據勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE與⊙O相切于點A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.本題考查了圓的切線的判定、勾股定理及垂徑定理的應用,屬于基礎題,熟練掌握切線的判定方法是關鍵:有切線時,常常“遇到切點連圓心得半徑,證垂直”.20、(1)(2)【解析】
(1)根據負整數指數冪、二次根式、零指數冪和特殊角的三角函數值可以解答本題;(2)根據分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.【詳解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,當x=﹣1時,原式==.本題考查分式的化簡求值、絕對值、零指數冪、負整數指數冪和特殊角的三角函數值,解答本題的關鍵是明確它們各自的計算方法.21、(2)方程有兩個不相等的實數根;(2)b=-2,a=2時,x2=x2=﹣2.【解析】
分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.22、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數量關系為AG=BE;(3)3【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 制造業(yè)安全生產隱患排查報告
- 企業(yè)數字營銷策略全案設計
- 基礎設施維護保養(yǎng)計劃表
- 營口理工學院《生物學實驗室安全》2024-2025學年第一學期期末試卷
- 福建水利電力職業(yè)技術學院《繪畫人物寫生》2024-2025學年第一學期期末試卷
- 2025年典當服務項目申請報告
- 昆明理工大學津橋學院《中外基礎教育比較研究》2024-2025學年第一學期期末試卷
- 南京財經大學《鄉(xiāng)村中學地理課程資源開發(fā)》2024-2025學年第一學期期末試卷
- 廈門大學嘉庚學院《機械制圖B》2024-2025學年第一學期期末試卷
- 2025年電子變壓器項目申請報告
- 2025年秋季新學期教學工作會議上校長講話:我們是不是“跑偏”了
- 2025年計算機一級考試題庫(附答案)
- 人卵母細胞成熟度分級
- 2025年四川大學生服務基層項目招募考試(醫(yī)學基礎知識)歷年參考題庫含答案詳解(5套)
- 刑法基本原則課件
- 2025年會議接待考試題庫
- 2025年貴州省中考英語試卷
- 政府職能邊界界定-洞察及研究
- 廣州市越秀區(qū)招聘衛(wèi)生健康系統(tǒng)事業(yè)單位事業(yè)編制人員考試真題2024
- 全國律師會費管理辦法
- 危險源辨識、評價及控制培訓
評論
0/150
提交評論