難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試題【必考】附答案詳解_第1頁
難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試題【必考】附答案詳解_第2頁
難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試題【必考】附答案詳解_第3頁
難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試題【必考】附答案詳解_第4頁
難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試題【必考】附答案詳解_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,點(diǎn)O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°2、已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+c的圖象和反比例函數(shù)y=的圖象在同一坐標(biāo)系中大致為(

)A. B.C. D.3、如圖A、B、C在⊙O上,連接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度數(shù)是120o,OC=.則圖中陰影部分的面積是(

)A. B. C. D.4、對于函數(shù)的圖象,下列說法不正確的是(

)A.開口向下 B.對稱軸是直線C.最大值為 D.與軸不相交5、已知(a≠0,b≠0),下列變形正確的是()A. B. C.2a=3b D.3a=2b6、對于反比例函數(shù)y=﹣,下列說法錯(cuò)誤的是()A.圖象經(jīng)過點(diǎn)(1,﹣5)B.圖象位于第二、第四象限C.當(dāng)x<0時(shí),y隨x的增大而減小D.當(dāng)x>0時(shí),y隨x的增大而增大二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結(jié)論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE2、如圖,在△ABC中,D,E分別是邊AB,AC上的點(diǎn),DE∥BC,AD:DB=2:1,下列結(jié)論中正確的是()A. B.C. D.AD?AB=AE?AC3、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點(diǎn)D、E.連接DE、OE.下列結(jié)論中正確的結(jié)論是()A.BC=2DE B.D點(diǎn)到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線4、對于實(shí)數(shù)a,b,定義運(yùn)算“※”:,例如:4※2,因?yàn)椋?,若函?shù),則下列結(jié)論正確的是(

)A.方程的解為,;B.當(dāng)時(shí),y隨x的增大而增大;C.若關(guān)于x的方程有三個(gè)解,則;D.當(dāng)時(shí),函數(shù)的最大值為1.5、如圖是二次函數(shù)圖象的一部分,過點(diǎn),,對稱軸為直線.則錯(cuò)誤的有(

)A. B. C. D.6、下表中列出的是一個(gè)二次函數(shù)的自變量與函數(shù)的幾組對應(yīng)值:…013……6…下列各選項(xiàng)中,正確的是(

)A.函數(shù)圖象的開口向下 B.當(dāng)時(shí),的值隨的增大而增大C.函數(shù)的圖象與軸無交點(diǎn) D.這個(gè)函數(shù)的最小值小于7、手工制作課上,小紅利用一些花布的邊角料,剪裁后裝裱手工畫.下面四個(gè)圖案是她剪裁出的空心不等邊三角形.等邊三角形.正方形和矩形花邊,其中每個(gè)圖案花邊的寬度都相同,那么每個(gè)圖案中花邊的內(nèi)外邊緣所圍成的幾何圖形相似的是(

)A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、已知二次函數(shù)與x軸有兩個(gè)交點(diǎn),把當(dāng)k取最小整數(shù)時(shí)的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象,若新圖象與直線有三個(gè)不同的公共點(diǎn),則m的值為______.2、圖1是一輛吊車的實(shí)物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動(dòng)點(diǎn)A離地面BD的高度AH為3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC為118°時(shí),操作平臺C離地面的高度為_______米.(結(jié)果保留小數(shù)點(diǎn)后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)3、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.4、拋物線是二次函數(shù),則m=___.5、如果一條拋物線與軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.6、如圖,某建筑物BC直立于水平地面,AC=9m,要建造階梯AB,使每階高不超過20cm,則此階梯最少要建_____階.(最后一階的高度不足20cm時(shí),按一階算,取1.732)7、若,則________.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在△ABC中,AB=AC,點(diǎn)P在BC上.(1)求作:△PCD,使點(diǎn)D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.2、定義:我們知道,四邊形的一條對角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對角線叫做這個(gè)四邊形的“相似對角線”.(1)如圖1,在四邊形中,,,對角線平分.求證:是四邊形的“相似對角線”;(2)如圖2,已知是四邊形的“相似對角線”,.連接,若的面積為,求的長.3、如圖,二次函數(shù)的圖象交軸于、兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.求二次函數(shù)的解析式和直線的解析式;點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長度的最大值;在拋物線上是否存在異于、的點(diǎn),使中邊上的高為?若存在求出點(diǎn)的坐標(biāo);若不存在請說明理由.4、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點(diǎn)O在射線AC上(點(diǎn)O不與點(diǎn)A重合),垂足為D,以點(diǎn)O為圓心,分別交射線AC于E、F兩點(diǎn),設(shè)OD=x.(1)如圖1,當(dāng)點(diǎn)O為AC邊的中點(diǎn)時(shí),求x的值;(2)如圖2,當(dāng)點(diǎn)O與點(diǎn)C重合時(shí),連接DF;求弦DF的長;(3)當(dāng)半圓O與BC無交點(diǎn)時(shí),直接寫出x的取值范圍.5、內(nèi)接于⊙O,在劣弧上,連交于,連,.(1)如圖1,求證:;(2)如圖2,平分,求證:;(3)如圖3,在(2)條件下,點(diǎn)在延長線上,連,于,,,,求⊙O半徑的長.6、如圖,矩形ABCD中,AB=6cm,BC=12cm..點(diǎn)M從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/秒的速度向B點(diǎn)移動(dòng),點(diǎn)N從點(diǎn)B開始沿BC邊以2cm/秒的速度向點(diǎn)C移動(dòng).若M,N分別從A,B點(diǎn)同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時(shí),求△DMN的面積.-參考答案-一、單選題1、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計(jì)算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計(jì)算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點(diǎn)】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個(gè)內(nèi)角.2、D【解析】【分析】先通過二次函數(shù)的圖像確定a、b、c的正負(fù),再利用x=1代入解析式,得到a+b+c的正負(fù)即可判定兩個(gè)函數(shù)的圖像所在的象限,即可得出正確選項(xiàng).【詳解】解:由圖像可知:圖像開口向下,對稱軸位于y軸左側(cè),與y軸正半軸交于一點(diǎn),可得:又由于當(dāng)x=1時(shí),因此一次函數(shù)的圖像經(jīng)過一、二、四三個(gè)象限,反比例函數(shù)的圖像位于二、四象限;故選:D.【考點(diǎn)】本題考查了二次函數(shù)的圖像與性質(zhì)、一次函數(shù)的圖像與性質(zhì)以及反比例函數(shù)的圖像與性質(zhì),解決本題的關(guān)鍵是能讀懂題干中的二次函數(shù)圖像,能根據(jù)圖像確定解析式中各系數(shù)的正負(fù),再通過各項(xiàng)系數(shù)的正負(fù)判定另外兩個(gè)函數(shù)的圖像所在的象限,本題蘊(yùn)含了數(shù)形結(jié)合的思想方法等.3、C【解析】【分析】首先根據(jù)∠BOC=3∠AOB,劣弧AC的度數(shù)是120o得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC-S△OEC求解即可.【詳解】解:設(shè)OB與AC相交于點(diǎn)E,如圖∵劣弧AC的度數(shù)是120o∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∵∠BOC=3∠AOB又∵∠AOC=∠AOB+∠BOC∴∠AOC=∠AOB+3∠AOB=120°∴∠AOB=30°∴∠BOC=3∠AOB=90°在Rt△OCE中,OC=2∴OE=OCtan∠OCE=2tan30°=2×=2∴S△OEC=×2×2=2S扇形OBC=∴用S陰影=S扇形OBC-S△OEC=-2故選C.【考點(diǎn)】本題考查了扇形面積的計(jì)算,解直角三角形等知識.在求不規(guī)則的陰影部分的面積時(shí)常常轉(zhuǎn)化為幾個(gè)規(guī)則幾何圖形的面積的和或差.4、D【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),進(jìn)行判斷,即可得到答案.【詳解】解:∵,則開口向下,故A正確;對稱軸是直線,故B正確;當(dāng),y有最大值k,故C正確;當(dāng),,與y軸肯定有交點(diǎn),故D錯(cuò)誤;故選擇:D.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).5、C【解析】【分析】根據(jù)比例的性質(zhì)“兩內(nèi)項(xiàng)之積等于兩外項(xiàng)之積”對各選項(xiàng)分析判斷即可得.【詳解】解:A、∵,∴,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;B、∵,∴,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;C、∵,∴,選項(xiàng)說法正確,符合題意;D、∵,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;故選C.【考點(diǎn)】本題考查了比例的性質(zhì),解題的關(guān)鍵是熟記比例的性質(zhì).6、C【解析】【分析】根據(jù)題目中的函數(shù)解析式和反比例函數(shù)的性質(zhì),可以判斷各個(gè)選項(xiàng)中的說法是否正確,從而可以解答本題.【詳解】解:反比例函數(shù)y=﹣,A、當(dāng)x=1時(shí),y=﹣=﹣5,圖像經(jīng)過點(diǎn)(1,-5),故選項(xiàng)A不符合題意;B、∵k=﹣5<0,故該函數(shù)圖象位于第二、四象限,故選項(xiàng)B不符合題意;C、當(dāng)x<0時(shí),y隨x的增大而增大,故選項(xiàng)C符合題意;D、當(dāng)x>0時(shí),y隨x的增大而增大,故選項(xiàng)D不符合題意;故選C.【考點(diǎn)】本題考查的是反比例函數(shù)的性質(zhì),熟練掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質(zhì)即可得到問題的選項(xiàng).【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯(cuò)誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)以及相似三角形的判定和性質(zhì),證明DE∥BC是解題的關(guān)鍵.2、ABC【解析】【分析】由DE∥BC,AD:DB=2:1,可得△ADE∽△ABC,推出,,推出,由此即可判斷;【詳解】解:∵DE∥BC,AD:DB=2:1,∴△ADE∽△ABC,∴,,∴,∴選項(xiàng)A、B、C正確,∵DE∥BC,∴,選項(xiàng)D錯(cuò)誤,故選:ABC.【考點(diǎn)】本題考查了平行線分線段成比例定理,相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.3、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當(dāng)重合,時(shí),可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個(gè)定值,因而B正確,符合題意;如圖:當(dāng)重合,時(shí),則為的切線,同理可得:此時(shí)則為的直徑,>此時(shí)<所以C不符合題意;與的外接圓有兩個(gè)交點(diǎn),不是外接圓的切線,所以D不符合題意;故選:AB.【考點(diǎn)】本題考查的是圓的基本性質(zhì),圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關(guān)系,切線的概念的理解,等邊三角形的判定與性質(zhì),靈活運(yùn)用以上知識解題是解題的關(guān)鍵.4、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時(shí)y=2x2﹣2x,x<1時(shí),y=﹣x2+1,進(jìn)而求解.【詳解】解:根據(jù)題意得:當(dāng)2x≥x+1,即x≥1時(shí),y=(2x)2﹣2x(x+1)=2x2﹣2x,當(dāng)2x<x+1,即x<1時(shí),y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當(dāng)x≥1時(shí),2x2﹣2x=0,解得x=0(舍去)或x=1,當(dāng)x<1時(shí),﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當(dāng)x>1時(shí),y=2x2﹣2x,拋物線開口向上,對稱軸是直線x=,∴x>1時(shí),y隨x的增大而增大,∴B選項(xiàng)正確.當(dāng)x≥1時(shí),y=2x2﹣2x=2(x﹣)2﹣,∴x=1時(shí),y取最小值為y=0,當(dāng)x<1時(shí),y=﹣x2+1=0,當(dāng)x=0時(shí),y取最大值為y=1,如圖,當(dāng)0<m<1時(shí),方程(2x)※(x+1)=m有三個(gè)解,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.故答案為:ABD.【考點(diǎn)】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.5、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點(diǎn)判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點(diǎn)在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項(xiàng)正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項(xiàng)錯(cuò)誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個(gè)不同的交點(diǎn),所以根的判別式,即;故本選項(xiàng)正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當(dāng)x=1時(shí),y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項(xiàng)錯(cuò)誤,符合題意.故選:BD.【考點(diǎn)】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運(yùn)用對稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.6、BD【解析】【分析】根據(jù)拋物線經(jīng)過點(diǎn)(0,-4),(3,-4)可得拋物線對稱軸為直線,由拋物線經(jīng)過點(diǎn)(-2,6)可得拋物線開口向上,進(jìn)而求解.【詳解】解:∵拋物線經(jīng)過點(diǎn)(0,-4),(3,-4),∴拋物線對稱軸為直線,∵拋物線經(jīng)過點(diǎn)(-2,6),∴當(dāng)x<時(shí),y隨x增大而減小,∴拋物線開口向上,且跟x軸有交點(diǎn),故A,C錯(cuò)誤,不符合題意;∴x>時(shí),y隨x增大而增大,故B正確,符合題意;由對稱性可知,在處取得最小值,且最小值小于-6.故D正確,符合題意.故選:BD.【考點(diǎn)】本題考查二次函數(shù)的圖象與性質(zhì),解題關(guān)鍵是掌握二次函數(shù)與方程的關(guān)系.7、ABC【解析】【分析】根據(jù)相似圖形的定義,結(jié)合圖形,對選項(xiàng)一一分析,排除不符合要求答案.【詳解】解:A、形狀相同,符合相似形的定義,對應(yīng)角相等,所以三角形相似,故該選項(xiàng)符合題意;B、形狀相同,符合相似形的定義,故該選項(xiàng)符合題意;C、形狀相同,符合相似形的定義,故該選項(xiàng)符合題意;D、兩個(gè)矩形,雖然四個(gè)角對應(yīng)相等,但對應(yīng)邊不成比例,故該選項(xiàng)不符合題意;故選:ABC.【考點(diǎn)】本題考查的是相似形的概念,聯(lián)系圖形,即形狀相同,大小不一定相同的圖形叫做相似形.全等形是相似形的一個(gè)特例.三、填空題1、1或【解析】【分析】先運(yùn)用根的判別式求得k的取值范圍,進(jìn)而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點(diǎn)坐標(biāo),畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個(gè)交點(diǎn),可以有兩種情況:①過交點(diǎn)(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(diǎn)(一1,0),與相切時(shí),根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個(gè)交點(diǎn),∴,解得,當(dāng)k取最小整數(shù)時(shí),,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象,所以新圖象的解析式為(或)

:①因?yàn)闉榈?,所以它的圖象從左到右是上升的,當(dāng)它與新圖象有3個(gè)交點(diǎn)時(shí)它一定過,把代入得所以,②與相切時(shí),圖象有三個(gè)交點(diǎn),,,解得.故答案為:1或.【考點(diǎn)】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點(diǎn),掌握分類討論和直線與拋物線相切時(shí)判別式等于零是解答本題的關(guān)鍵.2、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計(jì)算出,在中利用正弦可計(jì)算出,然后計(jì)算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【考點(diǎn)】本題考查了解直角三角形的應(yīng)用:先將實(shí)際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用三角函數(shù)的定義進(jìn)行幾何計(jì)算.3、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點(diǎn)】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.4、3【解析】【分析】根據(jù)二次函數(shù)的定義:一般地,形如(a、b、c是常數(shù)且a≠0)的函數(shù)叫做二次函數(shù),進(jìn)行求解即可.【詳解】解:∵拋物線是二次函數(shù),∴,∴,故答案為:3.【考點(diǎn)】本題主要考查了二次函數(shù)的定義,解題的關(guān)鍵在于能夠熟知二次函數(shù)的定義.5、2【解析】【分析】首先求出的頂點(diǎn)坐標(biāo)和與x軸兩個(gè)交點(diǎn)坐標(biāo),然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點(diǎn)坐標(biāo)為∵當(dāng)時(shí),即,解得:,∴拋物線與x軸兩個(gè)交點(diǎn)坐標(biāo)為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點(diǎn)】此題考查了二次函數(shù)與x軸的交點(diǎn)問題,等腰直角三角形的性質(zhì),解題的關(guān)鍵是求出的頂點(diǎn)坐標(biāo)和與x軸兩個(gè)交點(diǎn)坐標(biāo).6、26.【解析】【詳解】在Rt△ABC中,根據(jù)tan30°=BC:AC,即可求得BC=tan30°×AC=×9m=3m≈5.192m=519.2cm.又因519.2÷20≈26,所以即至少為26階.7、【解析】【分析】設(shè),,代入求解即可.【詳解】由可設(shè),,k是非零整數(shù),則.故答案為:.【考點(diǎn)】本題主要考查了比例的基本性質(zhì),準(zhǔn)確利用性質(zhì)變形是解題的關(guān)鍵.四、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)根據(jù)相似三角形的性質(zhì)可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD與AC的交點(diǎn)為D即可;(2)利用外角的性質(zhì)以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根據(jù)平行線的判定即可.【詳解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如圖,即為所作圖形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC,∴∠BAP=∠CPD=∠ABC,即∠CPD=∠ABC,∴PD∥AB.【考點(diǎn)】本題考查了尺規(guī)作圖,相似三角形的性質(zhì),外角的性質(zhì),難度不大,解題的關(guān)鍵是掌握尺規(guī)作圖的基本作法.2、(1)見解析;(2)【解析】【分析】(1)根據(jù)所給的相似對角線的證明方法證明即可;(2)由題可證的,得到,過點(diǎn)E作,可得出EQ,根據(jù)即可求解;【詳解】(1)證明:∵,平分,∴,∴.∵,∴.,∴∴是四邊形ABCD的“相似對角線”.(2)∵是四邊形EFGH的“相似對角線”,∴三角形EFH與三角形HFG相似.又,∴,∴,∴.過點(diǎn)E作,垂足為.則.∵,∴,∴,∴,∴.【考點(diǎn)】本題主要考查了四邊形綜合知識點(diǎn),涉及了相似三角形,解直角三角形等知識,準(zhǔn)確分析并能靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.3、;有最大值;存在滿足條件的點(diǎn),其坐標(biāo)為或【解析】【分析】可設(shè)拋物線解析式為頂點(diǎn)式,由點(diǎn)坐標(biāo)可求得拋物線的解析式,則可求得點(diǎn)坐標(biāo),利用待定系數(shù)法可求得直線解析式;設(shè)出點(diǎn)坐標(biāo),從而可表示出的長度,利用二次函數(shù)的性質(zhì)可求得其最大值;過作軸,交于點(diǎn),過和于,可設(shè)出點(diǎn)坐標(biāo),表示出的長度,由條件可證得為等腰直角三角形,則可得到關(guān)于點(diǎn)坐標(biāo)的方程,可求得點(diǎn)坐標(biāo).【詳解】解:拋物線的頂點(diǎn)的坐標(biāo)為,可設(shè)拋物線解析式為,點(diǎn)在該拋物線的圖象上,,解得,拋物線解析式為,即,點(diǎn)在軸上,令可得,點(diǎn)坐標(biāo)為,可設(shè)直線解析式為,把點(diǎn)坐標(biāo)代入可得,解得,直線解析式為;設(shè)點(diǎn)橫坐標(biāo)為,則,,,當(dāng)時(shí),有最大值;如圖,過作軸交于點(diǎn),交軸于點(diǎn),作于,設(shè),則,,是等腰直角三角形,,,當(dāng)中邊上的高為時(shí),即,,,當(dāng)時(shí),,方程無實(shí)數(shù)根,當(dāng)時(shí),解得或,或,綜上可知存在滿足條件的點(diǎn),其坐標(biāo)為或.【考點(diǎn)】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、二次函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)及方程思想等知識.在中主要是待定系數(shù)法的考查,注意拋物線頂點(diǎn)式的應(yīng)用,在中用點(diǎn)坐標(biāo)表示出的長是解題的關(guān)鍵,在中構(gòu)造等腰直角三角形求得的長是解題的關(guān)鍵.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度適中.4、(1);(2);(3)滿足條件的x取值范圍為:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判斷出,得出比例式求出x的值,即可得出結(jié)論;(2)先利用等面積求出x知,再判斷出,進(jìn)而求出DH,OH,最后用勾股定理求出DF,即可得出結(jié)論;(3)分兩種情況:點(diǎn)O在邊AC上和在AC的延長線上,找出分界點(diǎn),求出x值,即可得出結(jié)論.【詳解】(1)在Rt△ABC中,AB=10,根據(jù)勾股定理得,,∵點(diǎn)O為AC邊的中點(diǎn),∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如圖,過點(diǎn)D作DH⊥AC于H,∵點(diǎn)O與點(diǎn)C重合,∴S△ABC=OD?AB=,即10x=8×6,∴.∵DH⊥AC于H,∴∠DHO=∠ACB=90°,∴∠DOH+∠BOD=∠BOD+∠ABC,∴∠DOH=∠ABC,∴.∴,∴,∴,.∵OF=OD=,∴FH=OH+OF=.∴在Rt△DFH中,根據(jù)勾股定理得,∴.(3)如圖,當(dāng)點(diǎn)O在邊AC上,且半圓O與AB,∴OC=OD=x,∴AO=AC﹣OC=8﹣x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=3,∴0<x<3,如圖,當(dāng)點(diǎn)O在AC的延長線上,且半圓O與AB,∴OC=OD=x,∴AO=AC+OC=8+x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=12,即滿足條件的x取值范圍為:0<x<3或x>12.【考點(diǎn)】此題是圓的綜合題,主要考查了勾股定理,相似三角形的判定和性質(zhì),用分類討論的思想和方程的思想解決問題是解本題的關(guān)鍵.5、(1)見解析;(2)見解析;(3)【解析】【分析】(1)如圖,連接,由和分別是弧所對的圓心角和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論