




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《軸對(duì)稱》章節(jié)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列黑體字中,屬于軸對(duì)稱圖形的是(
)A.善 B.勤 C.健 D.樸2、在中,,,,則的長(zhǎng)度為(
)A. B. C. D.3、如圖,△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)P在AB上,過點(diǎn)P作PE⊥AC,垂足為E,延長(zhǎng)BC至點(diǎn)Q,使CQ=PA,連接PQ交AC于點(diǎn)D,則DE的長(zhǎng)為()A.1 B.1.8 C.2 D.2.54、如圖,在中,,,點(diǎn)是邊上任意一點(diǎn),過點(diǎn)作交于點(diǎn),則的度數(shù)是(
).A. B. C. D.5、如圖,在的正方形網(wǎng)格中有兩個(gè)格點(diǎn)A、B,連接,在網(wǎng)格中再找一個(gè)格點(diǎn)C,使得是等腰直角三角形,滿足條件的格點(diǎn)C的個(gè)數(shù)是(
)A.2 B.3 C.4 D.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,是內(nèi)一定點(diǎn),點(diǎn),分別在邊,上運(yùn)動(dòng),若,,則的周長(zhǎng)的最小值為___________.2、如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對(duì)角線AC的垂直平分線交AB于點(diǎn)E,交AC于點(diǎn)D.若y軸上有一點(diǎn)P(不與點(diǎn)C重合),能使△AEP是以為AE為腰的等腰三角形,則點(diǎn)P的坐標(biāo)為____.3、如圖將長(zhǎng)方形折疊,折痕為,的對(duì)應(yīng)邊與交于點(diǎn),若,則的度數(shù)為_______.4、已知△ABC是等腰三角形.若∠A=40°,則△ABC的頂角度數(shù)是____.5、已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),連接AD,過點(diǎn)C作CE∥AD,交BA的延長(zhǎng)線于點(diǎn)E.(1)求證:EC⊥BC;(2)若∠BAC=120°,試判定△ACE的形狀,并說明理由.2、如圖,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于點(diǎn)E.P是邊BC上的動(dòng)點(diǎn)(不與B,C重合),連結(jié)AP,將△APC沿AP翻折得△APD,連結(jié)DC,記∠BCD=α.(1)如圖,當(dāng)P與E重合時(shí),求α的度數(shù).(2)當(dāng)P與E不重合時(shí),記∠BAD=β,探究α與β的數(shù)量關(guān)系.3、如圖,中,,點(diǎn)在邊上,.求證.4、如圖,是的角平分線,,交于點(diǎn)E.(1)求證:.(2)當(dāng)時(shí),請(qǐng)判斷與的大小關(guān)系,并說明理由.5、如圖,在中,點(diǎn),分別是、邊上的點(diǎn),,,與相交于點(diǎn),求證:是等腰三角形.-參考答案-一、單選題1、A【解析】【分析】軸對(duì)稱圖形:把一個(gè)圖形沿某條直線對(duì)折,直線兩旁的部分能夠完全重合,則這個(gè)圖形是軸對(duì)稱圖形,根據(jù)軸對(duì)稱圖形的定義可得答案.【詳解】解:由軸對(duì)稱圖形的定義可得:善是軸對(duì)稱圖形,勤,健,樸三個(gè)字都不是軸對(duì)稱圖形,故符合題意,不符合題意,故選:【考點(diǎn)】本題考查的是軸對(duì)稱圖形的含義,軸對(duì)稱圖形的識(shí)別,掌握定義,確定對(duì)稱軸是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)直角三角形的性質(zhì)30°所對(duì)的直角邊等于斜邊的一半求解即可.【詳解】∵在Rt△ABC中,,,∴,∴∵,∴3BC=12cm.∴BC=4cm∴AB=8cm故選:C【考點(diǎn)】本題考查了含30度角的直角三角形的性質(zhì),掌握含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.3、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點(diǎn)】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)等腰三角形的性質(zhì)可得∠B=∠C,進(jìn)而可根據(jù)三角形的內(nèi)角和定理求出∠A的度數(shù),然后根據(jù)平行線的性質(zhì)可得∠DEC=∠A,進(jìn)一步即可求出結(jié)果.【詳解】解:∵,,∴∠B=∠C=65°,∴∠A=180°-∠B-∠C=50°,∵DF∥AB,∴∠DEC=∠A=50°,∴∠FEC=130°.故選:B.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)、平行線的性質(zhì)和三角形的內(nèi)角和定理等知識(shí),屬于常考題型,熟練掌握上述基礎(chǔ)知識(shí)是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰直角△ABC底邊;②AB為等腰直角△ABC其中的一條腰.【詳解】解:如圖:分情況討論:①AB為等腰直角△ABC底邊時(shí),符合條件的C點(diǎn)有0個(gè);②AB為等腰直角△ABC其中的一條腰時(shí),符合條件的C點(diǎn)有3個(gè).故共有3個(gè)點(diǎn),故選:B.【考點(diǎn)】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實(shí)際條件的圖形,數(shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.二、填空題1、3【解析】【分析】如圖,作P關(guān)于OA,OB的對(duì)稱點(diǎn)C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點(diǎn)時(shí),△PMN的周長(zhǎng)最短,最短的值是CD的長(zhǎng).根據(jù)對(duì)稱的性質(zhì)可以證得:△COD是等邊三角形,據(jù)此即可求解.【詳解】如圖,作P關(guān)于OA,OB的對(duì)稱點(diǎn)C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點(diǎn)時(shí),△PMN的周長(zhǎng)最短,最短的值是CD的長(zhǎng).∵點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)為C,∴PM=CM,OP=OC,∠COA=∠POA;∵點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)為D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等邊三角形,∴CD=OC=OD=3.∴△PMN的周長(zhǎng)的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【考點(diǎn)】此題主要考查軸對(duì)稱--最短路線問題,綜合運(yùn)用了等邊三角形的知識(shí).正確作出圖形,理解△PMN周長(zhǎng)最小的條件是解題的關(guān)鍵.2、,或【解析】【分析】設(shè)AE=m,根據(jù)勾股定理求出m的值,得到點(diǎn)E(1,),設(shè)點(diǎn)P坐標(biāo)為(0,y),根據(jù)勾股定理列出方程,即可得到答案.【詳解】∵對(duì)角線AC的垂直平分線交AB于點(diǎn)E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設(shè)AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設(shè)點(diǎn)P坐標(biāo)為(0,y),∵△AEP是以為AE為腰的等腰三角形,當(dāng)AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當(dāng)EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點(diǎn)P的坐標(biāo)為,,,故答案是:,,.【考點(diǎn)】本題主要考查等腰三角形的定義,勾股定理,矩形的性質(zhì),垂直平分線的性質(zhì),掌握勾股定理,列出方程,是解題的關(guān)鍵.3、70°【解析】【分析】依據(jù)矩形的性質(zhì)以及折疊的性質(zhì),即可得到∠DFE=∠B'EF,設(shè)∠BEF=α,則∠DFE=∠B'EF=α,根據(jù)B'E∥C'F,即可得出∠B'EF+∠C'FE=180°,進(jìn)而得到∠BEF的度數(shù).【詳解】解:∵四邊形ABCD是矩形,∴AB∥DC,∴∠BEF=∠DFE,由折疊可得,∠BEF=∠B'EF,設(shè)∠BEF=α,則∠DFE=∠B'EF=α,∵B'E∥C'F,∴∠B'EF+∠C'FE=180°,即α+α+40°=180°,解得α=70°,∴∠BEF=70°,故答案為:70°.【考點(diǎn)】本題考查折疊問題以及矩形的性質(zhì)的運(yùn)用,折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.4、40°或100°【解析】【分析】分∠A為三角形頂角或底角兩種情況討論,即可求解.【詳解】解:當(dāng)∠A為三角形頂角時(shí),則△ABC的頂角度數(shù)是40°;當(dāng)∠A為三角形底角時(shí),則△ABC的頂角度數(shù)是180°-40°-40°=100°;故答案為:40°或100°.【考點(diǎn)】本題考查了等腰三角形的性質(zhì),此類題目,難點(diǎn)在于要分情況討論.5、4.【解析】【分析】過點(diǎn)D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對(duì)的直角邊等于斜邊的一半可求出DF的長(zhǎng),此題得解.【詳解】過點(diǎn)D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點(diǎn)】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對(duì)的直角邊等于斜邊的一半,求出DF的長(zhǎng)是解題的關(guān)鍵.三、解答題1、(1)見詳解(2)見詳解【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到AD⊥BC,然后根據(jù)CE∥AD即可得到結(jié)論;(2)根據(jù)∠BAC=120°,得到∠BAD=60°,∠EAC=60°,由CE∥AD得到∠EAC=∠E=∠ECA=60°,即可證得結(jié)論.(1)證明:∵AB=AC,點(diǎn)D是BC的中點(diǎn),∴AD⊥BC,又∵CE∥AD,∴EC⊥BC;(2)解:△ACE是等邊三角形,理由如下:∵∠BAC=120°,∴∠BAD=∠BAC=60°,∠EAC=60°,又∵CE∥AD,∴∠E=60°,∴∠EAC=∠E=∠ECA=60°,∴△ACE是等邊三角形.【考點(diǎn)】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),等邊三角形的判定,熟練掌握性質(zhì)定理是解題的關(guān)鍵.2、(1)25°(2)①當(dāng)點(diǎn)P在線段BE上時(shí),2α-β=50°;②當(dāng)點(diǎn)P在線段CE上時(shí),2α+β=50°【解析】【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根據(jù)AE平分∠BAC,P與E重合,可得∠ACD,從而α=∠ACB?∠ACD;(2)分兩種情況:①當(dāng)點(diǎn)P在線段BE上時(shí),可得∠ADC=∠ACD=90°?α,根據(jù)∠ADC+∠BAD=∠B+∠BCD,即可得2α?β=50°;②當(dāng)點(diǎn)P在線段CE上時(shí),延長(zhǎng)AD交BC于點(diǎn)F,由∠ADC=∠ACD=90°?α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°?α=40°+α+β,即2α+β=50°.(1)解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=∠BAC=25°,∵P與E重合,∴D在AB邊上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;(2)①如圖1,當(dāng)點(diǎn)P在線段BE上時(shí),∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如圖2,當(dāng)點(diǎn)P在線段CE上時(shí),延長(zhǎng)AD交BC于點(diǎn)F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α+β,∴2α+β=50°.【考點(diǎn)】本題考查三角形綜合應(yīng)用,涉及軸對(duì)稱變換,三角形外角等于不相鄰的兩個(gè)內(nèi)角的和的應(yīng)用,解題的關(guān)鍵是掌握軸對(duì)稱的性質(zhì),能熟練運(yùn)用三角形外角的性質(zhì).3、證明見解析.【解析】【分析】先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)線段的和差可得,然后根據(jù)三角形的判定與性質(zhì)即可得證.【詳解】,,,,即,在和中,,,,即.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),熟練掌握三角形全等的判定定理與性質(zhì)是解題關(guān)鍵.4、(1)見解析(2)相等,見解析【解析】【分析】(1)利用角平分線的定義和平行線的性質(zhì)可得結(jié)論;
(2)利用平行線的性質(zhì)可得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水庫(kù)災(zāi)害預(yù)防與響應(yīng)方案
- 供水管網(wǎng)工程環(huán)境影響評(píng)估方案
- 光伏發(fā)電系統(tǒng)故障排查方案
- 輸電線路項(xiàng)目進(jìn)度管理方案
- 影視藝術(shù)特性75課件
- 水電消防知識(shí)培訓(xùn)總結(jié)課件
- 水電開槽基礎(chǔ)知識(shí)培訓(xùn)課件
- 二零二五版電子車間租賃安全操作規(guī)程協(xié)議
- 二零二五年度買房子首付分期還款協(xié)議合同
- 二零二五年度鍋爐安裝與節(jié)能改造一體化服務(wù)合同范本
- 軍隊(duì)基本醫(yī)療設(shè)備配備標(biāo)準(zhǔn)
- 2024新版《突發(fā)事件應(yīng)對(duì)法》及其應(yīng)用案例課件
- 介入手術(shù)交接流程
- 2024年國(guó)家安全法深度解讀
- DB11-T 1140-2024 兒童福利機(jī)構(gòu)常見疾病患兒養(yǎng)護(hù)規(guī)范
- 心臟康復(fù)戒煙處方
- 2024年中考數(shù)學(xué)真題分類匯編(全國(guó)版)專題12一次函數(shù)及其應(yīng)用(39題)含答案及解析
- 2024城市軌道交通節(jié)能改造EMC合作合同
- 全國(guó)職業(yè)院校技能大賽中職(大數(shù)據(jù)應(yīng)用與服務(wù)賽項(xiàng))考試題及答案
- 實(shí)驗(yàn)室檢驗(yàn)結(jié)果及報(bào)告管理制度
- 蘋果電腦macOS效率手冊(cè)
評(píng)論
0/150
提交評(píng)論