難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試卷(含答案詳解版)_第1頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試卷(含答案詳解版)_第2頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試卷(含答案詳解版)_第3頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試卷(含答案詳解版)_第4頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)2、如圖,DE是ABC的中位線,點(diǎn)F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長(zhǎng)為()A.2.5 B.1.5 C.4 D.53、已知,四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④4、順次連接矩形各邊中點(diǎn)得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形5、如圖,的對(duì)角線交于點(diǎn)O,E是CD的中點(diǎn),若,則的值為()A.2 B.4 C.8 D.16第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在?ABCD中,點(diǎn)E是對(duì)角線AC上一點(diǎn),過點(diǎn)E作AC的垂線,交邊AD于點(diǎn)P,交邊BC于點(diǎn)Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.2、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側(cè)作等腰Rt△ABC,則OC的長(zhǎng)為__________________.3、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點(diǎn)D在CB所在直線上運(yùn)動(dòng),以AD為邊作等邊三角形ADE,則CB=___.在點(diǎn)D運(yùn)動(dòng)過程中,CE的最小值為___.4、如圖,將長(zhǎng)方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.5、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在銳角△ABC內(nèi)部作出一個(gè)菱形ADEF,使∠A為菱形的一個(gè)內(nèi)角,頂點(diǎn)D、E、F分別落在AB、BC、CA邊上.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)2、如圖,中,.(1)作點(diǎn)A關(guān)于的對(duì)稱點(diǎn)C;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)所作的圖中,連接,,連接,交于點(diǎn)O.求證:四邊形是菱形.3、如圖,在矩形中,,,且四邊形是一個(gè)正方形,試問點(diǎn)F是的黃金分割點(diǎn)嗎?請(qǐng)說明理由.(補(bǔ)全解題過程)4、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),,M關(guān)于直線AF對(duì)稱.

(1)求證:B,M關(guān)于AE對(duì)稱;(2)若的平分線交AE的延長(zhǎng)線于G,求證:.5、如圖,已知△ACB中,∠ACB=90°,E是AB的中點(diǎn),連接EC,過點(diǎn)A作AD∥EC,過點(diǎn)C作CD∥EA,AD與CD交于點(diǎn)D.(1)求證:四邊形ADCE是菱形;(2)若AB=8,∠DAE=60°,則△ACB的面積為(直接填空).-參考答案-一、單選題1、A【解析】【分析】利用平行四邊形的對(duì)邊平行且相等的性質(zhì),先利用對(duì)邊平行,得到D點(diǎn)和C點(diǎn)的縱坐標(biāo)相等,再求出CD=AB=5,得到C點(diǎn)橫坐標(biāo),最后得到C點(diǎn)的坐標(biāo).【詳解】解:四邊形ABCD為平行四邊形。且。C點(diǎn)和D的縱坐標(biāo)相等,都為3.A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(5,0),.D點(diǎn)坐標(biāo)為(2,3),C點(diǎn)橫坐標(biāo)為,點(diǎn)坐標(biāo)為(7,3).故選:A.【點(diǎn)睛】本題主要是考察了平行四邊形的性質(zhì)、利用線段長(zhǎng)求點(diǎn)坐標(biāo),其中,熟練應(yīng)用平行四邊形對(duì)邊平行且相等的性質(zhì),是解決與平行四邊形有關(guān)的坐標(biāo)題的關(guān)鍵.2、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進(jìn)而可得答案.【詳解】解:∵D為AB中點(diǎn),∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點(diǎn)睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.3、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對(duì)選項(xiàng)進(jìn)行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯(cuò)誤.D、③可以說明四邊形是平行四邊形,再由②可得:對(duì)角線相等的平行四邊形為矩形,故D正確.故選:C.【點(diǎn)睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.4、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質(zhì)證明,再證明四邊形是平行四邊形,再證明從而可得結(jié)論.【詳解】解:如圖,矩形中,分別為四邊的中點(diǎn),,四邊形是平行四邊形,四邊形是菱形.故選C.【點(diǎn)睛】本題考查的是矩形的性質(zhì),菱形的判定,三角形的中位線的性質(zhì),熟練的運(yùn)用三角形的中位線的性質(zhì)解決中點(diǎn)四邊形問題是解本題的關(guān)鍵.5、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點(diǎn)E是CD的中點(diǎn),∴S△DOE=S△COD=4,故選:B.【點(diǎn)睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.二、填空題1、【解析】【分析】利用平行四邊形的知識(shí),將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長(zhǎng)度,即可求解;【詳解】過點(diǎn)A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點(diǎn)共線時(shí),的最小,∵,,∴,在中,;故答案是:.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.2、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據(jù)等腰直角三角形的性質(zhì)得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據(jù)勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABO=45°,根據(jù)勾股定理得到BC,于是得到結(jié)論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當(dāng)以AB、BC為直角邊作等腰直角三角形時(shí),與圖2的解法相同;綜上所述,OC的長(zhǎng)為2或2,故答案為:2或2.【點(diǎn)睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進(jìn)行分類討論是解題的關(guān)鍵.3、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時(shí),故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當(dāng)FD⊥BD時(shí),F(xiàn)D最小,此時(shí)∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠熟練掌握等邊三角形的性質(zhì).4、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點(diǎn)睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】由正方形的對(duì)稱性可知,PB=PD,當(dāng)B、P、E共線時(shí)PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對(duì)稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時(shí)PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點(diǎn)睛】本題考查軸對(duì)稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.三、解答題1、見解析【分析】根據(jù)基本作圖先作∠BAC的平分線AE,交BC于E,再利用基本作圖作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,則菱形ADEF為所求,然后證明即可.【詳解】解:先作∠BAC的平分線AE,交BC于E,作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,證明:∵DF是AE的垂直平分線,∴AD=DE,AF=EF,∴∠DEA=∠DAE,∠FAE=∠FEA,∵AE平分∠BAC,∴∠DAE=∠FAE,∴∠DEA=∠DAE=∠FAE,∠FEA=∠FAE=∠DAE,∴DE∥AF,EF∥AD,∴四邊形ADEF為平行四邊形,∵AD=DE,∴四邊形ADEF為菱形,

如圖,則菱形ADEF就是所求作的圖形.【點(diǎn)睛】本題考查尺規(guī)作菱形,基本作圖角平分線,線段垂直平分線,掌握尺規(guī)作菱形的方法,基本作圖角平分線,線段垂直平分線,菱形判定是解題關(guān)鍵.2、(1)見解析;(2)見解析【分析】(1)作BD的垂直平分線,再截取即可;(2)先證明三角形全等,然后根據(jù)全等三角形的性質(zhì)可得:,依據(jù)菱形的判定定理即可證明.【詳解】(1)解:如圖所示,作BD的垂直平分線,再截取,點(diǎn)即為所求.(2)證明:如圖所示:∵,,∴,在與中,,∴;∴,又∵,∴四邊形是菱形.【點(diǎn)睛】本題考查了尺規(guī)作圖和菱形的證明,解題關(guān)鍵是熟練運(yùn)用尺規(guī)作圖方法和菱形的判定定理進(jìn)行作圖與證明.3、是,理由見解析【分析】根據(jù)已知得出只需求得其BF與BC的比是否符合黃金比即可.【詳解】解:點(diǎn)F是BC的黃金分割點(diǎn).理由如下:∵四邊形是一個(gè)正方形,∴.又∵在矩形中,BC=AD=2,∴.∴點(diǎn)F是BC的黃金分割點(diǎn).【點(diǎn)睛】此題主要考查了黃金分割點(diǎn),根據(jù)已知條件和正方形的性質(zhì)進(jìn)行分析求解是解題關(guān)鍵.4、(1)見解析;(2)見解析【分析】(1)由已知可證,,即可得證;(2)由上述結(jié)論可得,再證△AFG為等腰直角三角形.【詳解】解:連結(jié)AM,DM,BM,

∵D、M關(guān)于直線AF對(duì)稱,∴AF垂直平分DM,∴AD=AM,F(xiàn)D=FM,∴△DAF≌△MAF,∴∠AMF=∠ADF=∠AME=∠ABE=90°,AM=AB,AE=AE,∴△BAE≌△MAE,∴EM=EB,∴AE垂直平分BM,∴B、M關(guān)于AE對(duì)稱;(2)由(1)知△BAE≌△MAE,∴AE平分∠BEF,∴∠EAF=∠BAD=45°,又AF平分∠DFE,F(xiàn)G平分∠EFC,∴∠AFG=90°.∴△AFG為等腰直角三角形,∴.【點(diǎn)睛】本題是四邊形綜合題,主要考查了軸對(duì)稱的性質(zhì),等腰直角三角形的判定,勾股定理,三角形的面積等知識(shí),綜合性較強(qiáng),有一定難度.準(zhǔn)確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.5、(1)見解析;(2)【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論