難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試題【模擬題】附答案詳解_第1頁(yè)
難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試題【模擬題】附答案詳解_第2頁(yè)
難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試題【模擬題】附答案詳解_第3頁(yè)
難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試題【模擬題】附答案詳解_第4頁(yè)
難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試題【模擬題】附答案詳解_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計(jì)12分)1、已知(a≠0,b≠0),下列變形正確的是()A. B. C.2a=3b D.3a=2b2、如圖,菱形ABCD的兩條對(duì)角線長(zhǎng)分別為AC=6,BD=8,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),則AP的最小值為(

)A.4 B.4.8 C.5 D.5.53、一元二次方程,配方后可形為(

)A. B.C. D.4、如圖,以點(diǎn)O為位似中心,把△ABC放大為原圖形的2倍得到,以下說法中錯(cuò)誤的是(

)A. B.點(diǎn)C,O,在同一直線上C. D.5、如圖,四邊形OABC是平行四邊形,點(diǎn)A的坐標(biāo)為A(3,0),∠COA=60°,D為邊AB的中點(diǎn),反比例函數(shù)y=(x>0)的圖象經(jīng)過C,D兩點(diǎn),直線CD與y軸相交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為(

)A.(0,2) B.(0,3) C.(0,5) D.(0,6)6、若點(diǎn)在雙曲線上,則該圖象必過的點(diǎn)是(

)A. B. C. D.二、多選題(6小題,每小題2分,共計(jì)12分)1、如圖,∠1=∠2,則下列各式能說明ABC∽ADE的是(

)A.∠D=∠B B.∠E=∠C C. D.2、已知直角三角形的兩條邊長(zhǎng)恰好是方程的兩個(gè)根,則此直角三角形斜邊長(zhǎng)是(

)A. B. C.3 D.53、圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB的中點(diǎn),連接AE,DF交于點(diǎn)N,將沿AE翻折,得到,AG交DF于點(diǎn)M,延長(zhǎng)EG交AD的延長(zhǎng)線于點(diǎn)H,連接CG,ME,取ME的中點(diǎn)為點(diǎn)O,連接NO,GO.則以下結(jié)論正確的有(

)A. B. C. D.4、下列多邊形中,一定不相似的是(

)A.兩個(gè)矩形 B.兩個(gè)菱形 C.兩個(gè)正方形 D.兩個(gè)平行四邊形5、平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,分別添加下列條件使得四邊形ABCD是矩形的條件有(

)是菱形的條件有(

)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO6、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計(jì)16分)1、已知,則的值為_____.2、如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E、F分別是邊AB、BC上的動(dòng)點(diǎn),且EF=4,點(diǎn)G是EF的中點(diǎn),AG、CG,則四邊形AGCD面積的最小值為_______.3、如圖,在長(zhǎng)方形中,,在上存在一點(diǎn)、沿直線把折疊,使點(diǎn)恰好落在邊上的點(diǎn)處,若,那么的長(zhǎng)為________.4、如圖,矩形ABCD中,AB=6,BC=8,對(duì)角線BD的垂直平分線EF交AD于點(diǎn)E、交BC于點(diǎn)F,則線段EF的長(zhǎng)為__.5、請(qǐng)寫出一個(gè)反比例函數(shù)的表達(dá)式,滿足條件當(dāng)x>0時(shí),y隨x的增大而增大,則此函數(shù)的表達(dá)式可以為_____.6、在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B的坐標(biāo)為(7,0),D,E分別是線段AO,AB上的點(diǎn),以DE所在直線為對(duì)稱軸,把△ADE作軸對(duì)稱變換得△A′DE,點(diǎn)A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長(zhǎng)為________.(結(jié)果保留2個(gè)有效數(shù)字)7、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,則GD=_______cm.8、若m,n是關(guān)于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點(diǎn)A,過A點(diǎn)作x軸的垂線,垂足為B,當(dāng)△OAB的面積為4時(shí),求m的值.2、(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長(zhǎng).3、如圖,在平面直角坐標(biāo)系中,一次函數(shù)由函數(shù)平移得到,且與函數(shù)的圖象交于點(diǎn).(1)求一次函數(shù)的表達(dá)式;(2)已知點(diǎn),過點(diǎn)作平行于軸的直線,交直線于點(diǎn),交函數(shù)的圖象于點(diǎn).當(dāng)時(shí),直接寫出的取值范圍.4、如圖,A,B兩點(diǎn)被池塘隔開,在AB外取一點(diǎn)C,連接AC,BC,在AC上取點(diǎn)M,使AM=3MC,作MN∥AB交BC于點(diǎn)N,量得MN=38m,求AB的長(zhǎng).5、勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成(圖1:△ABC中,∠BAC=90°).(1)如圖2,若以直角三角形的三邊為邊向外作等邊三角形,則它們的面積、、之間的數(shù)量關(guān)系是(

).(2)如圖3,若以直角三角形的三邊為直徑向外作半圓,則它們的面積、、之間的數(shù)量關(guān)系是(

),請(qǐng)說明理由.(3)如圖4,在四邊形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分別以AB、CD、AD、BC為邊向四邊形外作正方形,其面積分別為、、、,則、、、之間的數(shù)量關(guān)系式為(),請(qǐng)說明理由.6、已知關(guān)于的方程有實(shí)根.(1)求的取值范圍;(2)設(shè)方程的兩個(gè)根分別是,,且,試求的值.-參考答案-一、單選題1、C【解析】【分析】根據(jù)比例的性質(zhì)“兩內(nèi)項(xiàng)之積等于兩外項(xiàng)之積”對(duì)各選項(xiàng)分析判斷即可得.【詳解】解:A、∵,∴,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;B、∵,∴,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;C、∵,∴,選項(xiàng)說法正確,符合題意;D、∵,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;故選C.【考點(diǎn)】本題考查了比例的性質(zhì),解題的關(guān)鍵是熟記比例的性質(zhì).2、B【解析】【分析】由垂線段最短,可得AP⊥BC時(shí),AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長(zhǎng),由菱形的面積公式可求解.【詳解】如圖,設(shè)AC與BD的交點(diǎn)為O,∵點(diǎn)P是BC邊上的一動(dòng)點(diǎn),∴AP⊥BC時(shí),AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故選:B.【考點(diǎn)】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時(shí),AP有最小值是本題關(guān)鍵.3、A【解析】【分析】把常數(shù)項(xiàng)移到方程右邊,再把方程兩邊加上16,然后把方程作邊寫成完全平方形式即可【詳解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18.故選:A.【考點(diǎn)】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.4、C【解析】【分析】根據(jù)位似圖形的性質(zhì)進(jìn)行判斷即可得.【詳解】解:以點(diǎn)為位似中心,把放大為原圖形的2倍得到,、點(diǎn)在同一直線上、、,,即選項(xiàng)A、B、D說法正確,選項(xiàng)C說法錯(cuò)誤,故選:C.【考點(diǎn)】本題考查了位似圖形,熟練掌握位似圖形的性質(zhì)是解題關(guān)鍵.5、B【解析】【分析】作CE⊥x軸于點(diǎn)E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設(shè)C的坐標(biāo)為(x,x),表示出D的坐標(biāo),將C、D兩點(diǎn)坐標(biāo)代入反比例函數(shù)的解析式,解關(guān)于x的方程求出x即可得到點(diǎn)C、D的坐標(biāo),進(jìn)而求得直線CD的解析式,最后計(jì)算該直線與y軸交點(diǎn)坐標(biāo)即可得出結(jié)果.【詳解】解:作CE⊥x軸于點(diǎn)E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點(diǎn),∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設(shè)C的坐標(biāo)為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點(diǎn)的坐標(biāo)為(3+x,),把C、D的坐標(biāo)代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設(shè)直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當(dāng)x=0時(shí),,∴點(diǎn)E的坐標(biāo)為(0,).故選:B.【考點(diǎn)】本題主要考查了平行四邊形的性質(zhì)、運(yùn)用待定系數(shù)法求函數(shù)的解析式以及含度角的直角三角形的性質(zhì).根據(jù)反比例函數(shù)圖象經(jīng)過C、D兩點(diǎn),得出關(guān)于x的方程是解決問題的關(guān)鍵.6、A【解析】【分析】把已知點(diǎn)代入反比比例函數(shù)解析式求出k,然后判斷各選項(xiàng)點(diǎn)的坐標(biāo)是否符合即可.【詳解】解:∵點(diǎn)(2,3)在上,∴k=2×3=6,A選項(xiàng)1×6=k,符合題意;故選:A.【考點(diǎn)】本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,把點(diǎn)的坐標(biāo)代入計(jì)算即可.二、多選題1、ABC【解析】【分析】根據(jù)∠1=∠2,可知∠DAE=∠BAC,因此只要再找一組對(duì)應(yīng)角相等或兩組對(duì)應(yīng)邊成比例即可.【詳解】解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、∵∠DAE=∠BAC,∠D=∠B,∴ABC∽ADE,故A選項(xiàng)正確;B、∵∠DAE=∠BAC,∠E=∠C,∴ABC∽ADE,故B選項(xiàng)正確;C、∵∠DAE=∠BAC,,∴ABC∽ADE,故C選項(xiàng)正確;D、對(duì)應(yīng)邊成比例但無(wú)法證明其夾角相等,故其不能推出兩三角形相似.故選:ABC.【考點(diǎn)】此題考查了相似三角形的判定:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似,熟練掌握相似三角形的判定是解決本題的關(guān)鍵.2、AC【解析】【分析】先解出一元二次方程,再根據(jù)勾股定理計(jì)算即可;【詳解】,,∴或,當(dāng)2、3是直角邊時(shí),斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點(diǎn)】本題主要考查了一元二次方程的求解、勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.3、ABC【解析】【詳解】解:∵四邊形ABCD是正方形,∴AD=AB=BC,∠DAB=∠B=90°,∴∠ADF+∠AFD=90°,∵點(diǎn)E、F分別是邊BC、AB的中點(diǎn),∴AF=AB,BE=EC=BC,∴AF=BE,∴△DAF≌△ABE(SAS),∴∠BAE=∠ADF,∴∠BAE+∠AFD=90°,∴∠ANF=180°-(∠BAE+∠AFD)=90°,∴∠AND=90°,故A正確;∵四邊形ABCD是正方形,∴AD∥BC,∴∠DAE=∠AEB,由折疊得:∠AEB=∠AEG,∴∠DAE=∠AEG,∴AH=EH,故B正確;由折疊得:∠AEB=∠AEG=(180°-∠GEC),GE=BE=EC,∴∠EGC=∠ECG=(180°-∠GEC),∴.∠AEB=∠GCE,∴AE∥CG,故C正確;∵O為ME中點(diǎn),∴,,∴+,∵+-,且△AGE≌△DAF,∴+-,∵∠AND=90°=∠ANF,∠FAN=∠MAN,AN=AN,∴△ANF≌△ANM,∴+-,∴,只有M是邊DN中點(diǎn)的時(shí),D才成立,故D錯(cuò)誤;故選A、B、C.【考點(diǎn)】本題考查正方形和折疊的綜合應(yīng)用,熟練掌握正方形的性質(zhì)、折疊的性質(zhì)、三角形全等的判定和性質(zhì)、三角形內(nèi)角和定理、平行線的判定等是解題關(guān)鍵.4、ABD【解析】【分析】利用相似多邊形的對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角相等分析.【詳解】解:要判斷兩個(gè)多邊形是否相似,需要看對(duì)應(yīng)角是否相等,對(duì)應(yīng)邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對(duì)應(yīng)角、對(duì)應(yīng)邊的比不一定相等,故不一定相似,選項(xiàng)A、B、D符合題意;而兩個(gè)正方形,對(duì)應(yīng)角都是90°,對(duì)應(yīng)邊的比也都相等,故一定相似,選項(xiàng)C不符合題意.故選:ABD.【考點(diǎn)】本題考查了相似多邊形的識(shí)別.判定兩個(gè)圖形相似的依據(jù)是:對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角相等.兩個(gè)條件必須同時(shí)具備.5、AEBCD【解析】【分析】因?yàn)樗倪呅蜛BCD是平行四邊形,要成為矩形加上一個(gè)角為直角或?qū)蔷€相等即可;要使其成為菱形,加上一組鄰邊相等或?qū)蔷€垂直均可.【詳解】A選項(xiàng):∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個(gè)角是直角的平行四邊形是矩形)B選項(xiàng):∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對(duì)角線互相垂直的平行四邊形是菱形)C選項(xiàng):∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項(xiàng):如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項(xiàng):∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對(duì)角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點(diǎn)】考查了菱形和矩形的判定,解題關(guān)鍵是掌握平行四邊形的性質(zhì)和菱形、矩形的判定方法.6、BCD【解析】【分析】根據(jù)一元二次方程的定義對(duì)6個(gè)選項(xiàng)逐一進(jìn)行分析.【詳解】A中最高次數(shù)是3不是2,故本選項(xiàng)錯(cuò)誤;B符合一元二次方程的定義,故本選項(xiàng)正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項(xiàng)正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項(xiàng)正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項(xiàng)錯(cuò)誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項(xiàng)錯(cuò)誤.故答案為:BCD【考點(diǎn)】本題考查了一元二次方程的概念,只有一個(gè)未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識(shí)點(diǎn).三、填空題1、1【解析】【分析】由比例的性質(zhì),設(shè),則,,,然后代入計(jì)算,即可得到答案.【詳解】解:根據(jù)題意,設(shè),∴,,,∴,故答案為:1.【考點(diǎn)】本題考查了比例的性質(zhì),解題的關(guān)鍵是掌握比例的性質(zhì)進(jìn)行解題.2、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因?yàn)榈拿娣e固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點(diǎn)B到AC的距離減去BG的長(zhǎng)度,則可求解.【詳解】依題意,在中,為EF的中點(diǎn),,,點(diǎn)G在以B為圓心,2為半徑的圓與長(zhǎng)方形重合的弧上運(yùn)動(dòng),,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點(diǎn)B到AC的距離為,此時(shí)點(diǎn)G到AC的距離為,故的最小面積為,,故答案為:38.【考點(diǎn)】本題考查了動(dòng)點(diǎn)問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進(jìn)行求解,對(duì)于相關(guān)性質(zhì)定理的熟練運(yùn)用是解題的關(guān)鍵.3、【解析】【分析】由折疊的性質(zhì),得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長(zhǎng)度,再根據(jù)勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長(zhǎng)方形,由折疊的性質(zhì),,∵,又,在中,;故答案為:.【考點(diǎn)】本題考查了:①折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;②矩形的性質(zhì),勾股定理求解.4、【解析】【分析】根據(jù)矩形的性質(zhì)和勾股定理求出BD,證明△BOF∽△BCD,根據(jù)相似三角形的性質(zhì)得到比例式,求出EF即可.【詳解】解:如下圖,∵四邊形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD10,∵EF是BD的垂直平分線,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,∴,解得,OF,∵四邊形ABCD是矩形,∴ADBC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分線,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF,故答案為:.【考點(diǎn)】本題考查的是矩形的性質(zhì)、線段垂直平分線的性質(zhì)以及勾股定理的應(yīng)用,解題的關(guān)鍵是掌握矩形的四個(gè)角是直角、對(duì)邊相等以及線段垂直平分線的定義.5、答案不唯一,如【解析】【分析】依題意反比例函數(shù)中k0,即可寫出一個(gè).【詳解】∵當(dāng)時(shí),隨的增大而增大,∴反比例函數(shù)中k0,故可寫出若干,如.【考點(diǎn)】此題主要考察反比例函數(shù)的圖像6、2.0或3.3【解析】【分析】由點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B的坐標(biāo)為(7,0),可得OA=5,OB=7,AB=4,然后分別由△OA′D∽△OAB與△OA′D∽△OBA,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可得答案.【詳解】∵點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B的坐標(biāo)為(7,0),∴OA==5,OB=7,AB==4,若△OA′D∽△OAB,則,設(shè)AD=x,則OD=5﹣x,A′D=x,即,解得:x≈2.2,∴,∴OA′=2.0;若△OA′D∽△OBA,則,同理:可得:OA′≈3.3.故答案為2.0或3.3.【考點(diǎn)】此題考查了相似三角形的性質(zhì)與折疊的知識(shí).注意數(shù)形結(jié)合與方程思想的應(yīng)用,小心別漏解是解題關(guān)鍵.7、4.5【解析】【分析】由三角形的重心的性質(zhì)即可得出答案.【詳解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中線,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案為:4.5.【考點(diǎn)】本題考查了三角形的重心,三角形三條中線的交點(diǎn)叫做三角形的重心,三角形的重心到一個(gè)頂點(diǎn)的距離等于它到對(duì)邊中點(diǎn)距離的兩倍.8、21【解析】【分析】先根據(jù)根與系數(shù)的關(guān)系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計(jì)算.【詳解】解:∵m,n是關(guān)于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2,x1x2.四、解答題1、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個(gè)反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點(diǎn)】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.2、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長(zhǎng)線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長(zhǎng)線于M.由BE:BF=3:4,設(shè)BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據(jù)勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點(diǎn)】本題考查了正方形、矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論