




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在矩形ABCD中,AB=3,BC=5,點E為CB上一動點(不與點C重合),將△CDE沿DE所在直線折疊,點C的對應點C'恰好落在AE上,則CE的長是()A. B.1 C.2 D.2、如圖,在正方形中,,E為對角線上與A,C不重合的一個動點,過點E作于點F,于點G,連接.下列結論:①;②;③;④的最小值為3.其中正確結論的個數(shù)有(
)A.1個 B.2個 C.3個 D.4個3、某軌道列車共有3節(jié)車廂,設乘客從任意一節(jié)車廂上車的機會均等,某天甲、乙兩位乘客同時乘同一列軌道列車,則甲和乙從同一節(jié)車廂上車的概率是(
)A. B. C. D.4、如圖,把矩形OABC放入平面直角坐標系中,點B的坐標為(10,8),點D是OC上一點,將△BCD沿BD折疊,點C恰好落在OA上的點E處,則點D的坐標是()A.(0,4) B.(0,5)C.(0,3) D.(0,2)5、已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有2個,黑球有個,若隨機地從袋子中摸出一個球,記錄下顏色后,放回袋子中并搖勻,經過大量重復試驗發(fā)現(xiàn)摸出白球的頻率穩(wěn)定在0.4附近,則的值為(
)A.3 B.4 C.5 D.66、如圖,為△的中位線,點在上,且;若,則的長為(
)A.2 B.1 C.4 D.37、如圖,點A,B的坐標分別為,點C為坐標平面內一點,,點M為線段的中點,連接,則的最大值為()A. B. C. D.二、多選題(3小題,每小題2分,共計6分)1、下列方程中,有實數(shù)根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=02、如圖,在矩形中,,,點P在線段上以的速度從點B向點C運動,同時,點Q在線段上從點C向D點運動.若某一時刻與全等,則點Q的運動速度為(
)A. B. C. D.3、如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結論中正確的有(
)A.AE=BF; B.AE⊥BF; C.AO=OE; D.第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、準備在一塊長為30米,寬為24米的長方形花圃內修建四條寬度相等,且與各邊垂直的小路,(如圖所示)四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的4倍,若四條小路所占面積為80平方米,則小路的寬度為_____米.2、如圖,直角三角形ABC中,AC=1,BC=2,P為斜邊AB上一動點.PE⊥BC,PF⊥CA,則線段EF長的最小值為_________.3、如圖,矩形紙片ABCD,AD=4,AB=3.如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,如果直線EF經過點D,那么線段BE的長是____.4、如果一個直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個直角三角形的較小的內角是________.5、若正方形的對角線的長為4,則該正方形的面積為_________.6、某批青稞種子在相同條件下發(fā)芽試驗結果如下表:每次試驗粒數(shù)501003004006001000發(fā)芽頻數(shù)4796284380571948估計這批青稞發(fā)芽的概率是___________.(結果保留到0.01)7、社團課上,同學們進行了“摸球游戲”:在一個不透明的盒子里裝有幾十個除顏色不同外其余均相同的黑、白兩種球,將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程.整理數(shù)據(jù)后,制作了“摸出黑球的頻率”與“摸球的總次數(shù)”的關系圖象如圖所示,經分析可以推斷盒子里個數(shù)比較多的是___________(填“黑球”或“白球”).8、將正方形OEFG放在平面直角坐標系中,O是坐標原點,若點E的坐標為,則點G的坐標為_____.9、中國“一帶一路”倡議給沿線國家?guī)砗艽蟮慕洕б妫粞鼐€某地區(qū)居民2017年人均收入300美元,預計2019年人均收入將達到432美元,則2017年到2019年該地區(qū)居民年人均收入增長率為______________.10、如圖,在平面直角坐標系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點E,交AC于點D.若y軸上有一點P(不與點C重合),能使△AEP是以為AE為腰的等腰三角形,則點P的坐標為____.四、解答題(6小題,每小題10分,共計60分)1、年春節(jié)期間,新型冠狀病毒肆虐,突如其來的疫情讓大多數(shù)人不能外出,網絡銷售成為這個時期最重要的一種銷售方式.某鄉(xiāng)鎮(zhèn)貿易公司因此開設了一家網店,銷售當?shù)啬撤N農產品.已知該農產品成本為每千克元.調查發(fā)現(xiàn),每天銷售量與銷售單價(元)滿足如圖所示的函數(shù)關系(其中).寫出與之間的函數(shù)關系式.當銷售單價為多少元時,每天的銷售利潤可達到元?2、如圖,在?ABCD中,E,F(xiàn)分別是AD,BC上的點,且DE=BF,AC⊥EF,求證:四邊形AECF是菱形.3、閱讀例題,解答問題:例:解方程.解:原方程化為.令,原方程化成解得,(不合題意,舍去)...∴原方程的解是,請模仿上面的方法解方程:.4、如圖,在菱形ABCD中,AB=6,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.(1)求證:四邊形AMDN是平行四邊形;(2)填空:①當AM的值為時,四邊形AMDN是矩形;②當AM的值為時,四邊形AMDN是菱形.5、端午節(jié)是我國的傳統(tǒng)節(jié)日,益民食品廠為了解市民對去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、C、D表示)這四種不同口味的粽子的喜愛情況,對某居民區(qū)的市民進行了抽樣調查,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)本次參加抽樣調查的居民有多少人?(2)將兩幅統(tǒng)計圖補充完整;(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準備了四種粽子各一個,請用“列表法”或“畫樹形圖”的方法,求出小明同時選中花生粽子和紅棗粽子的概率.6、讀詩詞解題:(通過列方程式,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個位三,個位平方與壽符;哪位學子算得快,多少年華屬周瑜?-參考答案-一、單選題1、B【解析】【分析】由矩形的性質得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【詳解】解:∵四邊形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'==4,設CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故選:B.【考點】本題考查了翻折變換的性質、矩形的性質、勾股定理等知識;熟練掌握翻折變換和矩形的性質,由勾股定理得出方程是解題的關鍵.2、C【解析】【分析】延長,交于點,交于點,連接,交于點,先根據(jù)正方形的性質、三角形全等的判定定理與性質得出,再根據(jù)矩形的判定與性質可得,由此可判斷①;先根據(jù)三角形全等的性質可得,再根據(jù)矩形的性質可得,然后根據(jù)等腰三角形的性質可得,由此可判斷③;根據(jù)直角三角形的性質可得,從而可得,由此可判斷②;先根據(jù)垂線段最短可得當時,取得最小值,再解直角三角形可得的最小值,從而可得的最小值,由此可判斷④.【詳解】解:如圖,延長,交于點,交于點,連接,交于點,四邊形是正方形,,,在和中,,,,,四邊形是矩形,,,即結論①正確;,,,即結論③正確;,,,,即,結論②正確;由垂線段最短可知,當時,取得最小值,此時在中,,又,的最小值與的最小值相等,即為,結論④錯誤;綜上,正確的結論為①②③,共有3個,故選:C.【考點】本題考查了正方形的性質、三角形全等的判定定理與性質、解直角三角形等知識點,通過作輔助線,構造全等三角形和直角三角形是解題關鍵.3、C【解析】【分析】用樹狀圖表示所有等可能的結果,再求得甲和乙從同一節(jié)車廂上車的概率.【詳解】解:將3節(jié)車廂分別記為1號車廂,2號車廂,3號車廂,用樹狀圖表示所有等可能的結果,共有9種等可能的結果,其中,甲和乙從同一節(jié)車廂上車的有3可能,即甲和乙從同一節(jié)車廂上車的概率是,故選:C.【考點】本題考查概率,涉及畫樹狀圖求概率,是重要考點,難度較易,掌握相關知識是解題關鍵.4、C【解析】【分析】由題意可得AO=BC=10,AB=OC=8,DE=CD,BE=BC=10,在中,由勾股定理可求得,OE=4,設OD=x,則DE=CD=8-x,然后在中,由勾股定理即可求得OD=3,繼而求得點D的坐標.【詳解】解:∵點B的坐標為(10,8),∴AO=BC=10,AB=OC=8,由折疊的性質,可得:DE=CD,BE=BC=10,在中,由勾股定理得:,∴OE=AO-AE=10-6=4,設OD=x,則DE=CD=8-x,在中,由勾股定理得:,即:,解得:,∴OD=3,∴點D的坐標是(0,3).故選:C.【考點】本題主要考查了矩形的性質、折疊的性質、勾股定理,熟練掌握折疊的性質是解題的關鍵.5、A【解析】【分析】根據(jù)題意可得,然后進行求解即可.【詳解】解:由題意得:,解得:,經檢驗是原方程的解;故選A.【考點】本題主要考查分式方程的解法及概率,熟練掌握分式方程的解法及概率是解題的關鍵.6、A【解析】【分析】根據(jù)三角形中位線定理求出DE,根據(jù)直角三角形的性質求出DF,計算即可.【詳解】∵DE為△ABC的中位線,∴DE=BC=5,∵∠AFB=90°,D是AB的中點,∴DF=AB=3,∴EF=DE-DF=2,故選A.【考點】本題考查的是三角形中位線定理、直角三角形的性質,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.7、B【解析】【分析】如圖所示,取AB的中點N,連接ON,MN,根據(jù)三角形的三邊關系可知OM<ON+MN,則當ON與MN共線時,OM=ON+MN最大,再根據(jù)等腰直角三角形的性質以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點N,連接ON,MN,三角形的三邊關系可知OM<ON+MN,則當ON與MN共線時,OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點,∴ON=,又∵M為AC的中點,∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點】本題考查了等腰直角三角形的性質以及三角形中位線的性質,解題的關鍵是確定當ON與MN共線時,OM=ON+MN最大.二、多選題1、ABC【解析】【分析】根據(jù)直接開方法可確定A選項正確;根據(jù)因式分解法可確定B選項正確;根據(jù)方程的判別式,當時,方程有兩個不等的實數(shù)根,當時,方程有兩個相等的實數(shù)根,當時,方程無實數(shù)根,可判斷C選項正確,D選項錯誤.【詳解】A.,解得:,,方程有實數(shù)根,A選項正確;B.,解得:,,方程有實數(shù)根,B選項正確;C.,,,,方程有實數(shù)根,C選項正確;D.,,,,方程無實數(shù)根,D選項錯誤.故選:ABC.【考點】本題考查了一元二次方程根的判斷,熟練掌握根的判別式是解題的關鍵.2、AD【解析】【分析】設Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,則,,,由矩形的性質可知∠B=∠C=90°,則只有△ABP≌△PCQ和△ABP≌△QCP這兩種情況,然后利用全等三角形的性質進行求解即可.【詳解】解:設Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,∴,,,∵四邊形ABCD是矩形,∴∠B=∠C=90°,當△ABP≌△PCQ時,AB=CP,BP=CQ,∴,解得;當△ABP≌△QCP時,AB=QC,BP=CP,∴,解得∴Q的速度為4cm/或,故選AD..【考點】本題主要考查了矩形的性質,全等三角形的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.3、ABD【解析】【分析】根據(jù)正方形的性質得AB=AD=DC,∠BAD=∠D=90°,則由CE=DF易得AF=DE,根據(jù)“SAS”可判斷△ABF≌△DAE,所以AE=BF;根據(jù)全等的性質得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,則AE⊥BF;連結BE,BE>BC,BA≠BE,而BO⊥AE,根據(jù)垂直平分線的性質得到OA≠OE;最后根據(jù)△ABF≌△DAE得S△ABF=S△DAE,則S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四邊形DEOF.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中∴△ABF≌△DAE,∴AE=BF,所以A選項符合題意;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以B選項符合題意;連結BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以C選項不符合題意;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四邊形DEOF,所以D選項符合題意.故選ABD.【考點】本題考查了全等三角形的判定與性質,線段垂直平分線的判定與性質,也考查了正方形的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.三、填空題1、1.25【解析】【分析】設小路的寬度為,根據(jù)圖形所示,用表示出小路的面積,由小路面積為80平方米,求出未知數(shù).【詳解】設小路的寬度為,由題意和圖示可知,小路的面積為,解一元二次方程,由,可得.【考點】本題綜合考查一元二次方程的列法和求解,這類實際應用的題目,關鍵是要結合題意和圖示,列對方程.2、.【解析】【分析】先連接PC,判定四邊形ECFP是矩形,得到EF=PC,再根據(jù)當PC最小時,EF也最小,根據(jù)垂線段最短,可得當CP⊥AB時,PC最小,最后根據(jù)面積法,求得CP的長即可得到線段EF長的最小值.【詳解】解:連接PC,∵PE⊥BC,PF⊥CA,∴∠PEC=∠PFC=∠C=90°,∴四邊形ECFP是矩形,∴EF=PC,∴當PC最小時,EF也最小,∵垂線段最短,∴當CP⊥AB時,PC最小,∵AC=1,BC=2,∴AB=,又∵當CP⊥AB時,×AC×BC=×AB×CP,∴.∴線段EF長的最小值為.故答案為:.【考點】本題主要考查了矩形的判定與性質,勾股定理以及垂線段最短的綜合應用,解決問題的關鍵是運用矩形對角線相等的性質進行求解.3、【解析】【分析】根據(jù)題意作出圖形,根據(jù)矩形的性質與折疊的性質證明,進而勾股定理求得,即可求得,根據(jù)折疊,即可求解.【詳解】解:如圖∵將紙片沿AE折疊,使點B落在點F處,四邊形ABCD是矩形在中,故答案為:【考點】本題考查了矩形與折疊問題,勾股定理,掌握勾股定理是解題的關鍵.4、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質,證明得到,再利用外角性質求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個銳角,∴這個直角三角形的較小內角是.故答案為:.【考點】本題考查了直角三角形的性質和外角的性質,比較基礎.5、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質,熟練掌握正方形的面積的兩種求法是解題的關鍵.6、0.95【解析】【分析】利用大量重復試驗下事件發(fā)生的頻率可以估計該事件發(fā)生的概率直接回答即可.【詳解】觀察表格得到這批青稞發(fā)芽的頻率穩(wěn)定在0.95附近,則這批青稞發(fā)芽的概率的估計值是0.95,故答案為:0.95.【考點】此題考查了利用頻率估計概率,從表格中的數(shù)據(jù)確定出這種油菜籽發(fā)芽的頻率是解本題的關鍵.7、白球【解析】【分析】利用頻率估計概率的知識,確定摸出黑球的概率,由此得到答案.【詳解】解:由圖可知:摸出黑球的頻率是0.2,根據(jù)頻率估計概率的知識可得,摸一次摸到黑球的概率為0.2,∴可以推斷盒子里個數(shù)比較多的是白球,故答案為:白球.【考點】此題考查利用頻率估計概率,正確理解圖象的意義是解題的關鍵.8、或【解析】【分析】先利用正方形的性質,利用旋轉畫出正方形OEFG,從而得到G點的坐標.【詳解】把EO繞E點順時針(或逆時針)旋轉90°得到對應點為G(或G′),如圖,則G點的坐標為(2,-3)或G′的坐標為(﹣2,3),【考點】本題考查坐標與圖形的變換,涉及旋轉、正方形的性質等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.9、20【解析】【分析】設該地區(qū)人均收入增長率為x,根據(jù)2017年人均收入300美元,預計2019年人均收入將達到432美元,可列方程求解.【詳解】解:設該地區(qū)人均收入增長率為x,則300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴該地區(qū)人均收入增長率為20%.故本題答案應為:20%.【考點】一元二次方程在實際生活中的應用是本題的考點,根據(jù)題意列出方程是解題的關鍵.10、,或【解析】【分析】設AE=m,根據(jù)勾股定理求出m的值,得到點E(1,),設點P坐標為(0,y),根據(jù)勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設點P坐標為(0,y),∵△AEP是以為AE為腰的等腰三角形,當AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點P的坐標為,,,故答案是:,,.【考點】本題主要考查等腰三角形的定義,勾股定理,矩形的性質,垂直平分線的性質,掌握勾股定理,列出方程,是解題的關鍵.四、解答題1、(1);(2)當銷售單價為元時,每天的銷售利潤可達到元.【解析】【分析】(1)設函數(shù)解析式為,根據(jù)題意:銷售單價為10元時,銷售量為600kg,銷售單價為40元時,銷售量為150kg,代入熟知求得k、b的值即可求得解析式;(2)每天的銷售利潤等于每千克的銷售利潤乘以銷售量列式求解.【詳解】解:(1)根據(jù)題意:銷售單價為10元時,銷售量為600kg,銷售單價為40元時,銷售量為150kg,設與之間的函數(shù)關系式為:,則可得:,解得:,∴與之間的函數(shù)關系式為:;(2)根據(jù)題意可知每天的銷售利潤為:解得:;答:當銷售單價為元時,每天的銷售利潤可達到元.【考點】本題主要考查一次函數(shù)的實際應用,以及二次函數(shù)的實際應用,結合屬性結合的思想求出一次函數(shù)解析式,以及明確每天的銷售利潤等于每千克的銷售利潤乘以銷售量是解題的關鍵.2、見解析【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形即可證明【詳解】證明:四邊形是平行四邊形,,,,,,四邊形是平行四邊形,,四邊形是菱形.【考點】本題考查平行四邊形的性質、菱形的判定等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.3、,【解析】【分析】根據(jù)題意利用換元法解一元二次方程,然后解絕對值方程即可.【詳解】解:原方程化為.令,原方程化成.解得,(不合題意,舍去).,.∴原方程的解是,.【考點】本題主要考查了用換元法和因式分解法解一元二次方程,解絕對值方程,解題的關鍵在于能夠準確根據(jù)題意使用換元法解方程.4、(1)見解析(2)①3;②6【解析】【分析】(1)利用AAS證△NDE≌△MAE,得出NE=ME,進而得出結論;(2)①當四邊形AMDN是矩形時∠AMD=90°,由菱形的性質得AD=6,進而求出AM的值;②當四邊形AMDN是菱形時,AM=DM,由∠DAB=60°,得出△AMD為等邊三角形,進而求出AM的值.(1)證明:∵四邊形ABCD是菱形∴AB∥CD∴∠DNE=∠AME,∠NDE=∠MAE∵點E是AD邊的中點∴AE=DE∴△NDE≌△MAE(AAS)∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 入股店鋪協(xié)議合同范本
- 鹵菜小吃培訓合同范本
- 個人入資合同范本
- 國外中介勞務合同范本
- 承接內墻抹灰合同范本
- 武漢裝飾裝修合同范本
- 經濟適用購房合同范本
- 室內電纜施工合同范本
- 新加坡別墅拍賣合同范本
- 消防家電安全知識培訓課件
- 2025年檢驗檢測人員理論考試試題及答案
- 業(yè)務流程優(yōu)化實施步驟指導手冊
- 宗教事務條例解讀課件
- 2025-2026學年接力版(2024)小學英語四年級上冊(全冊)教學設計(附目錄)
- 2025年發(fā)展對象考試題題庫及答案
- 2025年醫(yī)療質量安全核心制度及病歷書寫規(guī)范考核試題(附答案)
- 2025年電力交易員(高級工)考試復習題庫(含答案)
- 2025北京廣播電視臺校園招聘17人筆試備考題庫及參考答案詳解
- 冷庫安全基本知識培訓課件
- DB11T 1481-2024 生產經營單位安全事故應急預案評審規(guī)范
- 澄海玩具行業(yè)出口中存在的問題及對策分析
評論
0/150
提交評論