版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,且滿足,則這個四邊形是()A.任意四邊形 B.平行四邊形 C.對角線相等的四邊形 D.對角線垂直的四邊形2、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:23、如圖,在中,,點,分別是,上的點,,,點,,分別是,,的中點,則的長為().A.4 B.10 C.6 D.84、如圖,在中,,,AD平分,E是AD中點,若,則CE的長為()A. B. C. D.5、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.3第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過點A的直線l折疊,使點D落到AB邊上的點處,折痕交CD邊于點E.若點P是直線l上的一個動點,則+PB的最小值_______.2、已知一直角三角形的兩直角邊長分別為6和8,則斜邊上中線的長度是_____.3、菱形的對角線之比為3:4,且面積為24,則它的對角線分別為________.4、如圖,在□中,⊥于點,⊥于點.若,,且的周長為40,則的面積為________.5、如圖,在中,,,,為上的兩個動點,且,則的最小值是________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC中,點D,E分別是AC,AB的中點,點F是CB延長線上的一點,且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.2、如圖,在矩形中,,,且四邊形是一個正方形,試問點F是的黃金分割點嗎?請說明理由.(補全解題過程)3、如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:;(2)當時,在不添加輔助線的情況下,直接寫出圖中等于的2倍的所有角.4、如圖,在銳角△ABC內部作出一個菱形ADEF,使∠A為菱形的一個內角,頂點D、E、F分別落在AB、BC、CA邊上.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)5、如圖,在中,對角線AC、BD交于點O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長.
-參考答案-一、單選題1、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,∴c、d是對邊,∴該四邊形是平行四邊形,故選:B.【點睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關鍵.2、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應用判定定理判定平行四邊形時,應仔細觀察題目所給的條件,仔細選擇適合于題目的判定方法進行解答,避免混用判定方法.3、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點P,D分別是AF,AB的中點,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.4、B【解析】【分析】根據(jù)三角形內角和定理求出∠BAC,根據(jù)角平分線的定義∠DAB=∠B,求出AD,根據(jù)直角三角形的性質解答即可.【詳解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中點,∴CE=AD=,故選:B.【點睛】本題考查的是直角三角形的性質、角平分線的定義,掌握直角三角形斜邊上的中線是斜邊的一半是解題的關鍵.5、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質,勾股定理,解題的關鍵是熟練運用這些性質解決問題.二、填空題1、【解析】【分析】不管P點在l上哪個位置,PD始終等于PD',故求PD'+PB可以轉化成求PD+PB,顯然當D、P、D'共線時PD+PB最短.【詳解】過點D作DM⊥AB交BA的延長線于點M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點D與點D′關于直線l對稱,連接BD交直線l于點P,此時PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點睛】本題考查平行四邊形性質和菱形性質,掌握這些是本題解題關鍵.2、5【解析】【分析】直角三角形中,斜邊長為斜邊中線長的2倍,所以求斜邊上中線的長求斜邊長即可.【詳解】解:在直角三角形中,兩直角邊長分別為6和8,則斜邊長==10,∴斜邊中線長為×10=5,故答案為5.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,根據(jù)勾股定理求得斜邊長是解題的關鍵.3、6和8##8和6【解析】【分析】根據(jù)比例設兩條對角線分別為3x、4x,再根據(jù)菱形的面積等于兩對角線乘積的一半列式求出x的值即可.【詳解】解:設兩條對角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負值舍去),∴菱形的兩對角線的長分別為,.故答案為:6和8.【點睛】本題考查了菱形的面積,主要利用了菱形的對角線互相垂直平分的性質,菱形的面積的求法,需熟記.4、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點睛】題目主要考查平行四邊形的性質及運用方程思想進行求解線段長,理解題意,熟練運用平行四邊形的性質及其面積公式是解題關鍵.5、【解析】【分析】過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,三點D、M、A′共線時,最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點D、M、A′共線時,A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點睛】本題主要考查了等腰三角形的性質,平行四邊形的判定與性質,勾股定理等知識,構造平行四邊形將AN轉化為DM是解題的關鍵.三、解答題1、(1)見解析;(2)平行四邊形DEFB的周長=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點D,E分別是AC,AB的中點,∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四邊形DEFB是平行四邊形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,∴BD=EF,∵D是AC的中點,AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四邊形DEFB的周長=2(DE+BD)=2(4+10)=28(cm).【點睛】本題考查了平行四邊形的判定與性質、三角形中位線定理、勾股定理等知識;熟練掌握三角形中位線定理,證明四邊形DEFB為平行四邊形是解題的關鍵.2、是,理由見解析【分析】根據(jù)已知得出只需求得其BF與BC的比是否符合黃金比即可.【詳解】解:點F是BC的黃金分割點.理由如下:∵四邊形是一個正方形,∴.又∵在矩形中,BC=AD=2,∴.∴點F是BC的黃金分割點.【點睛】此題主要考查了黃金分割點,根據(jù)已知條件和正方形的性質進行分析求解是解題關鍵.3、(1)證明見解析;(2)【分析】(1)先證明再證明從而可得結論;(2)證明是等邊三角形,再分別求解從而可得答案.【詳解】證明(1)平行四邊形ABCD中,,點E、F分別是BC、AD的中點,(2),是等邊三角形,四邊形是平行四邊形,而,所以等于的2倍的角有:【點睛】本題考查的是全等三角形的判定與性質,等邊三角形的判定與性質,平行四邊形的性質,證明“是等邊三角形”是解(2)的關鍵.4、見解析【分析】根據(jù)基本作圖先作∠BAC的平分線AE,交BC于E,再利用基本作圖作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,則菱形ADEF為所求,然后證明即可.【詳解】解:先作∠BAC的平分線AE,交BC于E,作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,證明:∵DF是AE的垂直平分線,∴AD=DE,AF=EF,∴∠DEA=∠DAE,∠FAE=∠FEA,∵AE平分∠BAC,∴∠DAE=∠FAE,∴∠DEA=∠DAE=∠FAE,∠FEA=∠FAE=∠DAE,∴DE∥AF,EF∥AD,∴四邊形ADEF為平行四邊形,∵AD=DE,∴四邊形ADEF為菱形,
如圖,則菱形ADEF就是所求作的圖形.【點睛】本題考查尺規(guī)作菱形,基本作圖角平分線,線段垂直平分線,掌握尺規(guī)作菱形的方法,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲業(yè)會員營銷模式2025:個性化服務與顧客忠誠度提升策略報告
- 2025-2030組件制造行業(yè)對最終產品產業(yè)供應鏈影響分析研究報告
- 木工 考試題及答案
- 2025年金融行業(yè)CRM數(shù)字化升級中的客戶關系管理客戶體驗優(yōu)化報告
- 數(shù)字化協(xié)同管理在制造業(yè)供應鏈中的供應鏈金融風險管理策略研究報告
- 2025年環(huán)保型印刷材料防偽技術合作協(xié)議
- 2025年綠色建材采購合作協(xié)議書執(zhí)行細則
- 2025年時尚婚禮車隊租賃及裝飾服務協(xié)議
- 二零二五年度住宅小區(qū)消防安全責任書范本
- 2025年能源企業(yè)原油進口及國內運輸一體化合同
- 山東藝術學院招聘筆試真題2024
- AI人工智能教學課件工具
- ab股股權協(xié)議書
- 專題12 文言文閱讀02 《醉翁亭記》-三年(2022-2024)中考語文真題匯編(全國)(含解析)
- 婦科疾病超聲診斷課件:深入解析超聲影像在婦科疾病診斷中的應用
- 部編版二上語文第一單元教材解讀
- 鍋爐作業(yè)考試試題及答案
- 臨平社工招聘試題及答案
- 人文醫(yī)療提升患者體驗的共情實踐
- 手機媒體概論(自考14237)復習題庫(含真題、典型題)
- 2025-2030中國直升機旅游行業(yè)市場深度調研及發(fā)展趨勢與投資前景預測研究報告
評論
0/150
提交評論