難點詳解人教版8年級數(shù)學上冊《全等三角形》綜合測試試題(含答案解析)_第1頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》綜合測試試題(含答案解析)_第2頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》綜合測試試題(含答案解析)_第3頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》綜合測試試題(含答案解析)_第4頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》綜合測試試題(含答案解析)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=7cm,則△DBE的周長是(

)A.6cm B.7cm C.8cm D.9cm2、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關系(

)A. B. C. D.3、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結論有(

)個A.2 B.3 C.4 D.54、若△ABC≌△DEF,且△ABC的周長為20,AB=5,BC=8,則DF長為(

)A.5 B.8 C.7 D.5或85、如圖所示,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A按順時針方向旋轉90°后得到△AFB,連接EF,有下列結論:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正確的有()A.①②③④ B.②③ C.②③④ D.③④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.2、如圖,ADBC,,,連接AC,過點D作于E,過點B作于F.(1)若,則∠ADE為___°(2)寫出線段BF、EF、DE三者間的數(shù)量關系___.3、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.則DE=________.4、如圖,在△ABC中,,AC=8cm,BC=10cm.點C在直線l上,動點P從A點出發(fā)沿A→C的路徑向終點C運動;動點Q從B點出發(fā)沿B→C→A路徑向終點A運動.點P和點Q分別以每秒1cm和2cm的運動速度同時開始運動,其中一點到達終點時另一點也停止運動,分別過點P和Q作PM⊥直線l于M,QN⊥直線l于N.則點P運動時間為____秒時,△PMC與△QNC全等.5、如圖,在△ABC中,AD⊥BC于點D,過A作AEBC,且AE=AB,AB上有一點F,連接EF.若EF=AC,CD=4BD,則=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,是邊上的一點,,平分,交邊于點,連接.(1)求證:;(2)若,,求的度數(shù).2、已知:如圖,,,.求證:.3、如圖,已知AB=AD,AC=AE,∠BAE=∠DAC.求證:∠C=∠E.4、如圖,在△ABC中,∠ABC=90°,AB=CB,點E在邊BC上,點F在邊AB的延長線上,BE=BF.

(1)求證:△ABE≌△CBF;

(2)若∠CAE=30°,求∠ACF的度數(shù).5、如圖,在中,D是邊上的點,,垂足分別為E,F(xiàn),且.求證:.-參考答案-一、單選題1、B【解析】【分析】由在△ABC中,∠C=90°,AC=BC,∠BAC的平分線AD交BC于D,DE⊥AB于E,根據(jù)角平分線的性質,可得CD=ED,AC=AE=BC,繼而可得△DBE的周長=AB.【詳解】∵在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,DE⊥AB于E,∴CD=ED,∠ADC=∠ADE,∴AE=AC,∵AC=BC,∴BC=AE,∴△DBE的周長是:BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=7cm.故選B.【考點】此題考查了角平分線的性質.此題難度適中,注意掌握數(shù)形結合思想與轉化思想的應用.2、C【解析】【分析】根據(jù)△△,證得,=,再利用∥BC得到=,再根據(jù)三角形內(nèi)角和定理即可得到結論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點】此題考查旋轉圖形的性質,等腰三角形的性質,兩直線平行內(nèi)錯角相等,三角形的內(nèi)角和定理.3、B【解析】【分析】①正確.利用三角形內(nèi)角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯誤.利用反證法,假設成立,推出矛盾即可.④錯誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個顯然與條件矛盾,故③錯誤故選B.【考點】本題考查了角平分線的判定與性質,三角形全等的判定方法,三角形內(nèi)角和定理,三角形的面積等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.4、C【解析】【分析】根據(jù)三角形的周長可得AC長,然后再利用全等三角形的性質可得DF長.【詳解】∵△ABC的周長為20,AB=5,BC=8,∴AC=20?5?8=7,∵△ABC≌△DEF,∴DF=AC=7,故選C.【考點】此題主要考查了全等三角形的性質,關鍵是掌握全等三角形的對應邊相等.5、C【解析】【分析】利用旋轉性質可得△ABF≌△ACD,根據(jù)全等三角形的性質一一判斷即可.【詳解】解:∵△ADC繞A順時針旋轉90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正確,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正確無法判斷BE=CD,故①錯誤,故選:C.【考點】本題考查了旋轉的性質:旋轉前后兩圖形全等,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.二、填空題1、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質,解一元一次方程等知識點的理解和掌握,能根據(jù)題意得出方程是解此題的關鍵.2、

30

【解析】【分析】(1)根據(jù)直角三角形兩銳角互余進行倒角即可求解;(2)根據(jù)ASA證明≌,即可求解.【詳解】解:(1)∵,且ADBC,,∴,∴,∴,∴;故答案為:30;(2)在和中,,∴≌,∴,,∵,∴.故答案為:【考點】本題考查直角三角形兩銳角互余、全等三角形的判定與性質等內(nèi)容,根據(jù)已知條件進行倒角是解題的關鍵.3、1【解析】【分析】先證明△ACD≌△CBE,再求出DE的長,解決問題.【詳解】解:∵BE⊥CE于E,AD⊥CE于D∴∵∴∵∴∴,∴.故答案為:1【考點】此題考查三角形全等的判定和性質,掌握再全等三角形的判定和性質是解題的關鍵.4、2或6或6或2【解析】【分析】設點P運動時間為t秒,根據(jù)題意化成兩種情況,由全等三角形的性質得出,列出關于t的方程,求解即可.【詳解】解:設運動時間為t秒時,△PMC≌△CNQ,∴斜邊,分兩種情況:①如圖1,點P在AC上,點Q在BC上,圖1∵,,∴,,∵,∴,∴;②如圖2,點P、Q都在AC上,此時點P、Q重合,圖2∵,,∴,∴;綜上所述,點P運動時間為2或6秒時,△PMC與△QNC全等,故答案為:2或6.【考點】本題考查了全等三角形的性質和判定的應用,根據(jù)題意判斷兩三角形全等的條件是解題關鍵,同時要注意分情況討論,解題時避免遺漏答案.5、【解析】【分析】在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,∵AD⊥BC于點D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點】此題考查平行線的性質、全等三角形的判定與性質、有關面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關鍵.三、解答題1、(1)見解析(2)50°【解析】【分析】(1)根據(jù)平分,可得,即可求證;(2)根據(jù)全等三角形的性質可得,再由三角形外角的性質,即可求解.(1)明:∵平分,∴,在和中,∵,∴;(2)解:∵,∴,∵,∴.【考點】本題主要考查了全等三角形的判定和性質,熟練掌握全等三角形的判定和性質定理是解題的關鍵.2、見解析【解析】【分析】連接AC,首先根據(jù)“HL”判定△ABC△CDA,得到AD=BC,再證△ADO△CBO,則可得到需證的結論.【詳解】證明:連接AC.在Rt△ABC和Rt△CDA中,∴△ABC△CDA.∴AD=BC.∵,,∴∠AD0=∠CB0=90°.又∵∠AOD=∠COB,∴△ADO△CBO.∴.【考點】本題考查了全等三角形的判定定理,能靈活運用全等三角形的判定定理進行推理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3、見解析.【解析】【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根據(jù)“SAS”可判斷△ABC≌△ADE,根據(jù)全等的性質即可得到∠C=∠E.【詳解】∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS),∴∠C=∠E.【考點】本題考查了全等三角形的判定與性質:判斷三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應角相等,對應邊相等.4、(1)見解析;(2)∠ACF的度數(shù)為60°【解析】【分析】(1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;(2)根據(jù)題意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,進而可以求出∠ACF的度數(shù).【詳解】(1)證明:∵∠ABC=90°,

∴∠ABC=∠CBF=90°.在△ABE和△CBF中,,∴△ABE≌△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論