難點詳解滬科版9年級下冊期末試題及完整答案詳解一套_第1頁
難點詳解滬科版9年級下冊期末試題及完整答案詳解一套_第2頁
難點詳解滬科版9年級下冊期末試題及完整答案詳解一套_第3頁
難點詳解滬科版9年級下冊期末試題及完整答案詳解一套_第4頁
難點詳解滬科版9年級下冊期末試題及完整答案詳解一套_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點C為優(yōu)弧上的一個動點,則面積的最大值是()A. B. C. D.2、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6203、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.4、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.65、圖2是由圖1經(jīng)過某一種圖形的運動得到的,這種圖形的運動是()A.平移 B.翻折 C.旋轉(zhuǎn) D.以上三種都不對6、在不透明口袋內(nèi)裝有除顏色外完全相同的5個小球,其中紅球2個,白球3個.?dāng)嚢杈鶆蚝?,隨機抽取一個小球,是紅球的概率為()A. B. C. D.7、如圖,DC是⊙O的直徑,弦AB⊥CD于M,則下列結(jié)論不一定成立的是()A.AM=BM B.CM=DM C. D.8、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點C逆時針旋轉(zhuǎn)60°,得到△MNC,那么BM=______________.2、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.3、把一個正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.4、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.5、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.6、如圖,將矩形繞點A順時針旋轉(zhuǎn)到矩形的位置,旋轉(zhuǎn)角為.若,則的大小為________(度).7、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”.當(dāng),時,則陰影部分的面積為__________.三、解答題(7小題,每小題0分,共計0分)1、定理:一條弧所對的圓周角等于這條弧所對的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長.(2)當(dāng)點E在線段OA上時,若△DOE與△AEC相似,求∠DCA的正切值.(3)當(dāng)OE=1時,求點A與點D之間的距離(直接寫出答案).2、根據(jù)要求回答以下視圖問題:(1)如圖①,它是由5個小正方體擺成的一個幾何體,將正方體①移走后,新幾何體與原幾何體相比,視圖沒有發(fā)生變化;(2)如圖②,請你在網(wǎng)格紙中畫出該幾何體的主視圖(請用斜線陰影表示);(3)如圖③,它是由幾個小正方體組成的幾何體的俯視圖,小正方形上的數(shù)字表示該位置上的正方體的個數(shù),請在網(wǎng)格紙中畫出該幾何體的左視圖(請用斜線陰影表示).3、一個不透明的口袋中有4個完全相同的小球,把它們分別標(biāo)號為1,2,3,4隨機摸取一個小球后,不放回,再隨機摸出一個小球,分別求下列事件的概率:(1)兩次取出的小球標(biāo)號和為奇數(shù);(2)兩次取出的小球標(biāo)號和為偶數(shù).4、小宇和小偉玩“石頭、剪刀、布”的游戲.這個游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢相同不分勝負(fù).如果二人同時隨機出手(分別出三種手勢中的一種手勢)一次,那么小宇獲勝的概率是多少?5、某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當(dāng)天舉辦了甲.乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其他都相同,搖獎?wù)弑仨殢膿u獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如表).甲種品牌化妝品球兩紅一紅一白兩白禮金券(元)6126乙種品牌化妝品球兩紅一紅一白兩白禮金券(元)12612(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;(2)如果一個顧客當(dāng)天在本店購買滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.6、一張圓桌旁設(shè)有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.7、在太原市創(chuàng)建國家文明城市的過程中,東東和南南積極參加志愿者活動,有下列三個志愿者工作崗位供他們選擇:(每個工作崗位僅能讓一個人工作)①2個清理類崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用,表示);②1個宣傳類崗位:垃圾分類知識宣傳(用表示).(1)東東從三個崗位中隨機選取一個報名,恰好選擇清理類崗位的概率為________.(2)若東東和南南各隨機從三個崗位中選取一個報名,請你利用畫樹狀圖法或列表法求出他們恰好都選擇同一類崗位的概率.-參考答案-一、單選題1、C【分析】如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結(jié)論.【詳解】解:如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識,解題的關(guān)鍵是求出CT的最大值,屬于中考常考題型.2、C【分析】根據(jù)頻率估計概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時,頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點睛】本題主要考查了利用頻率估計概率,概率的得出是在大量實驗的基礎(chǔ)上得出的,不能單純的依靠幾次決定.3、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.5、C【詳解】解:根據(jù)圖形可知,這種圖形的運動是旋轉(zhuǎn)而得到的,故選:C.【點睛】本題考查了圖形的旋轉(zhuǎn),熟記圖形的旋轉(zhuǎn)的定義(把一個平面圖形繞平面內(nèi)某一點轉(zhuǎn)動一個角度,叫做圖形的旋轉(zhuǎn))是解題關(guān)鍵.6、A【分析】用紅球的個數(shù)除以所有球的個數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個球,其中紅球有2個,∴P(摸到紅球)=,故選:A.【點睛】此題主要考查概率的意義及求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、B【分析】根據(jù)垂徑定理“垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧”進(jìn)行判斷即可得.【詳解】解:∵弦AB⊥CD,CD過圓心O,∴AM=BM,,,即選項A、C、D選項說法正確,不符合題意,當(dāng)根據(jù)已知條件得CM和DM不一定相等,故選B.【點睛】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理.8、B【分析】根據(jù)一元二次方程的定義,二次項系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計算即可.【詳解】解:當(dāng)a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.二、填空題1、【分析】設(shè)BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設(shè)BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點C逆時針旋轉(zhuǎn)60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵M(jìn)F⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點睛】本題考查等腰三角形性質(zhì)、等邊三角形的性質(zhì)及判定,解題的關(guān)鍵是證明∠CDB=90°.2、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.3、60【分析】正六邊形連接各個頂點和中心,這些連線會將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點睛】本題考查中心對稱圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.4、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關(guān)鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.5、2【分析】根據(jù)扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.6、20【分析】先利用旋轉(zhuǎn)的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計算出∠BAD‘=70°,然后利用互余計算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.7、【分析】根據(jù)陰影部分面積等于以為直徑的2個半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關(guān)鍵.三、解答題1、(1)8(2)(3)或.【分析】(1)過點O作OH⊥AC于點H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長,即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點O作OH⊥AC于點H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設(shè)OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當(dāng)△DOE與△AEC相似時可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當(dāng)△DOE與△AEC相似時,不存在∠DOE=∠ACD情況,∴當(dāng)△DOE與△AEC相似時,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)當(dāng)點E在線段OA上時,如圖3,過點E作EG⊥AC于G,過點O作OH⊥AC于H,延長AO交⊙O于M,連接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;當(dāng)點E在線段AO的延長線上時,如圖4,延長AO交⊙O于M,連接AD,DM,過點E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,綜上所述:AD的長是或【點睛】本題考查了垂徑定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性質(zhì)與判定,圓周角定理,正切的作出輔助線是解題的關(guān)鍵.2、(1)主(2)見解析(3)見解析【分析】(1)根據(jù)移開后的主視圖和沒有移開時的主視圖一致即可求解;(2)根據(jù)題意畫出主視圖即可;(3)根據(jù)從左邊起各列的小正方形數(shù)分別為2,3,1,畫出左視圖即可.(1)將正方體①移走后,新幾何體與原幾何體相比主視圖沒有變化,如圖,故答案為:主(2)圖②的主視圖如圖,(3)圖③的左視圖如圖,【點睛】本題考查了畫三視圖,根據(jù)立體圖形得出三視圖是解題的關(guān)鍵.3、(1);(2).【分析】(1)列出表格展示所有可能的結(jié)果,根據(jù)表格即可知共有12種可能的情況,再找到兩次取出的小球標(biāo)號和為奇數(shù)的情況數(shù),利用概率公式,即可求解;(2)找出兩次取出的小球標(biāo)號和為偶數(shù)的情況數(shù),再利用概率公式,即可求解.(1)解:根據(jù)題意列出表格,如下表:根據(jù)表格可知:共有12種可能的情況,其中兩次取出的小球標(biāo)號和為奇數(shù)的情況有8種,故兩次取出的小球標(biāo)號和為奇數(shù)的概率為;(2)根據(jù)表格可知:兩次取出的小球標(biāo)號和為偶數(shù)的情況有4種.故兩次取出的小球標(biāo)號和為偶數(shù)的概率為.123411+2=3,奇數(shù)1+3=4,偶數(shù)1+4=5,奇數(shù)22+1=3,奇數(shù)2+3=5,奇數(shù)2+4=6,偶數(shù)33+1=4,偶數(shù)3+2=5,奇數(shù)3+4=7,奇數(shù)44+1=5,奇數(shù)4+2=6,偶數(shù)4+3=7,奇數(shù)【點睛】4、小宇獲勝的概率是,見解析.【分析】根據(jù)題意畫樹狀圖表示出所有等可能的情況,繼而解題.【詳解】解:畫樹狀圖如下,所有機會均等的情況共9種,小宇獲勝的概率為:,答:小宇獲勝的概率是.【點睛】本題考查用列表法或畫樹狀圖表示概率,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.5、(1)搖出一紅一白的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論