




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
試卷第=page22頁,共=sectionpages11頁試卷第=page22頁,共=sectionpages22頁人教版8年級數(shù)學下冊《平行四邊形》達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:12、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點D,E是AD上的一個動點,連接EC,將線段EC繞點C按逆時針方向旋轉(zhuǎn)60°得到FC,連接DF,則在點E的運動過程中,DF的最小值是()A.1 B.1.5 C.2 D.43、將一張長方形紙片ABCD按如圖所示的方式折疊,AE、AF為折痕,點B、D折疊后的對應點分別為、,若=10°,則∠EAF的度數(shù)為()A.40° B.45° C.50° D.55°4、如圖,在正方形有中,E是AB上的動點,(不與A、B重合),連結(jié)DE,點A關(guān)于DE的對稱點為F,連結(jié)EF并延長交BC于點G,連接DG,過點E作⊥DE交DG的延長線于點H,連接,那么的值為()A.1 B. C. D.25、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,則cos∠EFG的值為________.2、如圖,在?ABCD中,點E是對角線AC上一點,過點E作AC的垂線,交邊AD于點P,交邊BC于點Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.3、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.4、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點,將?ABCD沿EH翻折,使得AD的對應線段FG經(jīng)過點C,若FG⊥CD,CG=4,則EF的長度為_____.5、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點D在CB所在直線上運動,以AD為邊作等邊三角形ADE,則CB=___.在點D運動過程中,CE的最小值為___.三、解答題(5小題,每小題10分,共計50分)1、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過點A作射線l∥BC,若點P從點A出發(fā),以每秒2cm的速度沿射線l運動,設(shè)運動時間為t秒(t>0),作∠PCB的平分線交射線l于點D,記點D關(guān)于射線CP的對稱點是點E,連接AE、PE、BP.(1)求證:PC=PD;(2)當△PBC是等腰三角形時,求t的值;(3)是否存在點P,使得△PAE是直角三角形,如果存在,請直接寫出t的值,如果不存在,請說明理由.2、如圖,在平面直角坐標系中,ΔABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,5).(1)請畫出△ABC關(guān)于x軸的對稱圖形ΔA1B1C1;(2)借助網(wǎng)格,利用無刻度直尺畫出線段CD,使CD平分ΔABC的面積.(保留確定點D的痕跡).3、如圖,在△ABC中,點D,E分別是AC,AB的中點,點F是CB延長線上的一點,且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.4、如圖,平行四邊形ABCD中,點E、F分別在CD、BC的延長線上,.
(1)求證:D是EC中點;(2)若,于點F,直接寫出圖中與CF相等的線段.5、如圖,在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.(1)求證:四邊形ABCD是菱形;(2)若AB=,BD=2,求OE的長.-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補.2、C【解析】【分析】取線段AC的中點G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進而即可得出DF=GE,再根據(jù)點G為AC的中點,即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當EG∥BC時,EG最小,∵點G為AC的中點,∴此時EG=DF=CD=BC=2.故選:C.【點睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.3、A【解析】【分析】可以設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根據(jù)四邊形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【詳解】解:設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊性質(zhì)可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四邊形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.則∠EAF的度數(shù)為40°.故選:A.【點睛】本題通過折疊變換考查學生的邏輯思維能力,解決此類問題,應結(jié)合題意,最好實際操作圖形的折疊,易于找到圖形間的關(guān)系.4、B【解析】【分析】作輔助線,構(gòu)建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說明△BNH是等腰直角三角形,可得結(jié)論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點A關(guān)于直線DE的對稱點為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定定理和性質(zhì)定理,等知識,解決本題的關(guān)鍵是作出輔助線,利用正方形的性質(zhì)得到相等的邊和相等的角,證明三角形全等.5、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應用判定定理判定平行四邊形時,應仔細觀察題目所給的條件,仔細選擇適合于題目的判定方法進行解答,避免混用判定方法.二、填空題1、【解析】【分析】根據(jù)題意連接BE,連接AE交FG于O,如圖,利用菱形的性質(zhì)得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計算出BE=CE=,然后證明BE⊥AB,利用勾股定理計算出AE,從而得到OA的長;設(shè)AF=x,根據(jù)折疊的性質(zhì)得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點為CD的中點,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設(shè)AF=x,∵菱形紙片翻折,使點A落在CD的中點E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點睛】本題考查了折疊的性質(zhì)以及菱形的性質(zhì),注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.2、【解析】【分析】利用平行四邊形的知識,將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長度,即可求解;【詳解】過點A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當M、P、C三點共線時,的最小,∵,,∴,在中,;故答案是:.【點睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準確計算是解題的關(guān)鍵.3、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點并應用解決問題是解題的關(guān)鍵.4、【解析】【分析】延長CF與AB交于點M,由平行四邊形的性質(zhì)得BC長度,GM⊥AB,由折疊性質(zhì)得GF,∠EFM,進而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結(jié)果.【詳解】解:延長CF與AB交于點M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點睛】本題主要考查了平行四邊形的性質(zhì),折疊的性質(zhì),解直角三角形的應用,關(guān)鍵是作輔助線構(gòu)造直角三角形.5、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時,故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當FD⊥BD時,F(xiàn)D最小,此時∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點睛】本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠熟練掌握等邊三角形的性質(zhì).三、解答題1、(1)見解析;(2)t=1或或;(3)存在,△PAE是直角三角形時t=或【分析】(1)根據(jù)平行線的性質(zhì)可得∠PDC=∠∠BCD,根據(jù)角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當BP=BC=4cm時,當PC=BC=4cm時,當PC=PB時三種情況討論求解即可;(3)分當∠PAE=90°時,當∠APE=90°時,當∠AEP=90°時,三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,
若△PBC是等腰三角形,存在以下三種情況:①當BP=BC=4cm時,作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當PC=BC=4cm時,由勾股定理,即,解得;③當PC=PB時,P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當t=1或或時,△PBC是等腰三角形;(3)∵D關(guān)于射線CP的對稱點是點E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,則存在以下三種情況:①當∠PAE=90°時,此時點C、A、E在一條直線上,且AE=AC=3cm,∵CD平分∠BCP,∴∠ECP=∠DCP=∠BCD,∴∠ACP=∠ACB=30°,∴,∵,即,∴即2t=,解得;②當∠APE=90°時,∴∠EPD=90°∵D、E關(guān)于直線CP對稱,∴∠EPF=∠DPF=45°,∴∠APC=∠DPF=45°,∵l∥BC,∴∠CAP=180°-∠ACB=90°,∴∠ACP=45°,∴AP=AC=3cm,∴,∴;③當∠AEP=90°時,在Rt△ACP中,PC>AP,在Rt△AEP中,AP>PE,∵PC=PE=PD,故此情況不存在,綜上,△PAE是直角三角形時或.【點睛】本題主要考查了軸對稱的性質(zhì),角平分線的定義,平行線的性質(zhì),等腰三角形的性質(zhì),勾股定理,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠利用分類討論的思想求解.2、(1)見解析;(2)見解析;【分析】(1)根據(jù)關(guān)于軸對稱的點的坐標變化作圖即可;(2)利用格點特征以及矩形對角線互相平分且相等的性質(zhì)取中點從而求解.【詳解】解:(1)如圖所示,ΔA1B1C1即為所求,(2)連接格點,交于點,已知、為矩形的對角線,連接,根據(jù)矩形的性質(zhì)可得點為線段的中點,即為所求.【點睛】本題考查了網(wǎng)格作圖中的軸對稱變換和矩形的性質(zhì),解題的關(guān)鍵是掌握并運用相關(guān)性質(zhì)進行求解.3、(1)見解析;(2)平行四邊形DEFB的周長=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點D,E分別是AC,AB的中點,∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四邊形DEFB是平行四邊形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,∴BD=EF,∵D是AC的中點,AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四邊形DEFB的周長=2(DE+BD)=2(4+10)=28(cm).【點睛】本題考查了平行四邊形的判定與性質(zhì)、三角形中位線定理、勾股定理等知識;熟練掌握三角形中位線定理,證明四邊形DEFB為平行四邊形是解題的關(guān)鍵.4、(1)見祥解;(2)AB=DC=DE=DF=CF,證明見詳解.【分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)信息化培訓體系構(gòu)建
- 培訓課件施工
- 2025年深圳中考英語沖刺押題《閱讀理解之說明文(科技與傳統(tǒng))》含答案解析
- 2025年度航空器事故保險理賠合同:航空安全與賠償流程規(guī)范
- 2025年醫(yī)院病房大樓全面清潔及綠色環(huán)保認證綜合服務(wù)協(xié)議
- 2025年太陽能光伏玻璃產(chǎn)品銷售及長期維護服務(wù)合同
- 汽車指標租賃協(xié)議書
- 0轉(zhuǎn)型廠房轉(zhuǎn)租合作協(xié)議模板
- 水彩落日課件
- 2025年度大氣污染治理與節(jié)能減排合作協(xié)議
- 預制水磨石施工方案
- 學校安全管理制度大全
- 《思想道德與法治》(23版):第四章 明確價值要求 踐行價值準則
- 道路建設(shè)三級安全教育培訓
- 病歷的書寫規(guī)范講課幻燈課件
- 征兵業(yè)務(wù)培訓
- 心功能不全病人的護理查房
- NCCN成人癌痛指南
- 地理與生活密切相關(guān)
- 望聞問切中醫(yī)四診
- 訂單交期管理制度流程
評論
0/150
提交評論