難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評試題(解析版)_第1頁
難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評試題(解析版)_第2頁
難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評試題(解析版)_第3頁
難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評試題(解析版)_第4頁
難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評試題(解析版)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列說法正確的是(

)A.形狀相同的兩個(gè)三角形全等 B.面積相等的兩個(gè)三角形全等C.完全重合的兩個(gè)三角形全等 D.所有的等邊三角形全等2、如圖,在梯形中,,,,那么下列結(jié)論不正確的是()A. B.C. D.3、如圖,B,C,E,F(xiàn)四點(diǎn)在一條直線上,下列條件能判定△ABC與△DEF全等的是(

)A.AB∥DE,∠A=∠D,BE=CF B.AB∥DE,AB=DE,AC=DFC.AB∥DE,AC=DF,BE=CF D.AB∥DE,AC∥DF,∠A=∠D4、如圖,已知,,,是上的兩個(gè)點(diǎn),,,若,,,則的長為(

)A. B. C. D.5、如圖,在和中,,連接交于點(diǎn),連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個(gè)數(shù)為().A.4 B.3 C.2 D.1第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在四邊形中,,,,點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動,同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動,設(shè)運(yùn)動時(shí)間為,當(dāng)與以,,為頂點(diǎn)的三角形全等時(shí),點(diǎn)的運(yùn)動速度為______.2、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點(diǎn)P從A點(diǎn)出發(fā)沿A—C—B路徑向終點(diǎn)運(yùn)動,終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B—C—A路徑向終點(diǎn)運(yùn)動,終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以2和6的運(yùn)動速度同時(shí)開始運(yùn)動,兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動,在某時(shí)刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點(diǎn)P的運(yùn)動時(shí)間為_______.3、我們定義:一個(gè)三角形最小內(nèi)角的角平分線將這個(gè)三角形分割得到的兩個(gè)三角形它們的面積之比稱為“最小角割比Ω”(),那么三邊長分別為7,24,25的三角形的最小角割比Ω是______.4、如圖,在Rt△ABC中,∠B=90°,以頂點(diǎn)C為圓心、適當(dāng)長為半徑畫弧,分別交AC、BC于點(diǎn)E、F,再分別以點(diǎn)E、F為圓心,以大于EF的長為半徑畫弧,兩弧交于點(diǎn)P,作射線CP交AB于點(diǎn)D.若BD=4,AC=16,則△ACD的面積是______.5、如圖,在x、y軸上分別截取OA、OB,使OA=OB,再分別以點(diǎn)A、B為圓心,以大于AB的長度為半徑畫弧,兩弧交于點(diǎn)C.若C的坐標(biāo)為(3a,﹣a+8),則a=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在△ABC中,AB=BC,∠ABC=60°,線段AC與AD關(guān)于直線AP對稱,E是線段BD與直線AP的交點(diǎn).(1)若∠DAE=15°,求證:△ABD是等腰直角三角形;(2)連CE,求證:BE=AE+CE.2、如圖,在中,D是邊上的點(diǎn),,垂足分別為E,F(xiàn),且.求證:.3、如圖,在△ABC中,∠ABC、∠ACB的平分線交于點(diǎn)D,延長BD交AC于E,G、F分別在BD、BC上,連接DF、GF,其中∠A=2∠BDF,GD=DE.(1)當(dāng)∠A=80°時(shí),求∠EDC的度數(shù);(2)求證:CF=FG+CE.4、如圖,已知△ABC.求作:BC邊上的高與內(nèi)角∠B的角平分線的交點(diǎn).5、小明的學(xué)習(xí)過程中,對教材中的一個(gè)有趣問題做如下探究:(1)【習(xí)題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點(diǎn).求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點(diǎn),其反向延長線與邊的延長線交于點(diǎn),若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點(diǎn),使得,角平分線交于點(diǎn).的外角的平分線所在直線與的延長線交于點(diǎn).若,求的度數(shù).-參考答案-一、單選題1、C【解析】【分析】根據(jù)全等形的概念:能夠完全重合的兩個(gè)圖形叫做全等形,以及全等三角形的判定定理可得答案.【詳解】解:A、形狀相同的兩個(gè)三角形全等,說法錯(cuò)誤,應(yīng)該是形狀相同且大小也相同的兩個(gè)三角形全等;B、面積相等的兩個(gè)三角形全等,說法錯(cuò)誤;C、完全重合的兩個(gè)三角形全等,說法正確;D、所有的等邊三角形全等,說法錯(cuò)誤;故選:C.【考點(diǎn)】此題主要考查了全等圖形,關(guān)鍵是掌握全等形的概念.2、A【解析】【分析】A、根據(jù)三角形的三邊關(guān)系即可得出A不正確;B、通過等腰梯形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)即可得出∠ADB=90°,從而得出B正確;C、由梯形的性質(zhì)得出AB∥CD,結(jié)合角的計(jì)算即可得出∠ABC=60°,即C正確;D、由平行線的性質(zhì)結(jié)合等腰三角形的性質(zhì)即可得出∠DAC=∠CAB,即D正確.綜上即可得出結(jié)論.【詳解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正確;B、∵四邊形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正確,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正確.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正確;故選:A.【考點(diǎn)】本題考查了梯形的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是逐項(xiàng)分析四個(gè)選項(xiàng)的正誤.本題屬于中檔題,稍顯繁瑣,但好在該題為選擇題,只需由三角形的三邊關(guān)系得出A不正確即可.3、A【解析】【分析】根據(jù)全等三角形的判定條件逐一判斷即可.【詳解】解:A、∵,∴,∵,∴,即在和中∵∴,故A符合題意;B、∵,∴,再由,不可以利用SSA證明兩個(gè)三角形全等,故B不符合題意;C、∵,∴,再由,不可以利用SSA證明兩個(gè)三角形全等,故C不符合題意;D、∵,∴,,再由,不可以利用AAA證明兩個(gè)三角形全等,故D不符合題意;故選A.【考點(diǎn)】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.4、B【解析】【分析】由題意可證可得可求EF的長.【詳解】解:在和中,故選:B.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.5、B【解析】【分析】根據(jù)題意逐個(gè)證明即可,①只要證明,即可證明;②利用三角形的外角性質(zhì)即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質(zhì)得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個(gè)數(shù)有3個(gè);故選B.【考點(diǎn)】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關(guān)鍵在于利用三角形的全等證明來證明線段相等,角相等.二、填空題1、1或【解析】【分析】設(shè)點(diǎn)的運(yùn)動速度為,由題意可得,與以,,為頂點(diǎn)的三角形全等時(shí)分為兩種情況:,再利用全等三角形的性質(zhì)求解即可.【詳解】解:設(shè)點(diǎn)的運(yùn)動速度為,由題意可得,∵∴與以,,為頂點(diǎn)的三角形全等時(shí)可分為兩種情況:①當(dāng)時(shí),∴,∴∴∴此時(shí)點(diǎn)的運(yùn)動速度為;②當(dāng)時(shí),,∴,∴,此時(shí)點(diǎn)的運(yùn)動速度為,故答案為:1或.【考點(diǎn)】本題主要考查三角形全等的性質(zhì),掌握全等三角形的對應(yīng)邊相等是解題的關(guān)鍵,注意分情況討論.2、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時(shí)P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時(shí),此時(shí)不存在,④當(dāng)Q到A點(diǎn),與A重合,P在BC上時(shí).【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時(shí)P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時(shí),此時(shí)不存在;理由是:28÷6=,12÷2=6,即Q在AC上運(yùn)動時(shí),P點(diǎn)也在AC上運(yùn)動;④當(dāng)Q到A點(diǎn)(和A重合),P在BC上時(shí),∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點(diǎn)P運(yùn)動1或3.5或12時(shí),△PEC與△QFC全等.【考點(diǎn)】本題主要考查對全等三角形的性質(zhì),解一元一次方程等知識點(diǎn)的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.3、.【解析】【分析】根據(jù)題意作出圖形,然后根據(jù)角平分線的性質(zhì)得到,再根據(jù)三角形的面積和最小角割比Ω的定義計(jì)算即可.【詳解】解:如圖示,,,,則,根據(jù)題意,作的角平分線交于點(diǎn),過點(diǎn),作交于點(diǎn),過點(diǎn),作交于點(diǎn),則∵,,則()故答案是:.【考點(diǎn)】本題考查了三角形角平分線的性質(zhì)和三角形的面積計(jì)算,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.4、32【解析】【分析】過點(diǎn)D作DQ⊥AC,由作法可知CP是角平分線,根據(jù)角平分線的性質(zhì)知DB=DQ=3,再由三角形的面積公式計(jì)算即可.【詳解】解:如圖,過點(diǎn)D作DQ⊥AC于點(diǎn)Q,由作圖知CP是∠ACB的平分線,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=?AC?DQ=,故答案為32.【考點(diǎn)】本題主要考查作圖-基本作圖,三角形面積,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖及角平分線的性質(zhì).5、2【解析】【分析】根據(jù)尺規(guī)作圖可知,點(diǎn)C在∠AOB角平分線上,所以C點(diǎn)的橫坐標(biāo)和縱坐標(biāo)相等,即可以求出a的值.【詳解】解:根據(jù)題目尺規(guī)作圖可知,交點(diǎn)C是∠AOB角平分線上的一點(diǎn),∵點(diǎn)C在第一象限,∴點(diǎn)C的橫坐標(biāo)和縱坐標(biāo)都是正數(shù)且橫坐標(biāo)等于縱坐標(biāo),即3a=-a+8,得a=2,故答案為:2.【考點(diǎn)】本題考查了角平分線尺規(guī)作圖,角平分線的性質(zhì),以及平面直角坐標(biāo)系的知識,結(jié)合直角坐標(biāo)系的知識列方程求解是解答本題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)首先根據(jù)題意確定出△ABC是等邊三角形,然后根據(jù)等邊三角形的性質(zhì)推出∠BAC=60°,再根據(jù)線段AC與AD關(guān)于直線AP對稱,以及∠DAE=15°,推出∠BAD=90°,即可得出結(jié)論;(2)利用“截長補(bǔ)短”的方法在BE上取點(diǎn)F,使BF=CE,連接AF,根據(jù)題目條件推出△ABF≌△ACE,得出AF=AE,再進(jìn)一步推出∠AEF=60°,可得到△AFE是等邊三角形,則得到AF=FE,從而推出結(jié)論即可.【詳解】證明:(1)∵在△ABC中,AB=BC,∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=BC,∠BAC=∠ABC=∠ACB=60°,∵線段AC與AD關(guān)于直線AP對稱,∴∠CAE=∠DAE=15°,AD=AC,∴∠BAE=∠BAC+∠CAE=75°,∴∠BAD=90°,∵AB=AC=AD,∴△ABD是等腰直角三角形;(2)在BE上取點(diǎn)F,使BF=CE,連接AF,∵線段AC與AD關(guān)于直線AP對稱,∴∠ACE=∠ADE,AD=AC,∵AD=AC=AB,∴∠ADB=∠ABD=∠ACE,在△ABF與△ACE中,∴△ABF≌△ACE(SAS),∴AF=AE,∵AD=AB,∴∠D=∠ABD,又∠CAE=∠DAE,∴,∴在△AFE中,AF=AE,∠AEF=60°,∴△AFE是等邊三角形,∴AF=FE,∴BE=BF+FE=CE+AE.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì),以及等邊三角形的判定與性質(zhì)等,掌握等邊三角形的判定與性質(zhì),以及全等三角形的常見輔助線的構(gòu)造方法是解題關(guān)鍵.2、見解析【解析】【分析】由得出,由SAS證明,得出對應(yīng)角相等即可.【詳解】證明:∵,∴.在和中,∴,∴.【考點(diǎn)】本小題考查垂線的性質(zhì)、全等三角形的判定與性質(zhì)、等基礎(chǔ)知識,考查推理能力、空間觀念與幾何直觀.3、(1)(2)證明見解析【解析】【分析】(1)根據(jù)三角形內(nèi)角和與角平分線定義可得,再根據(jù)外角性質(zhì)即可求出;(2)在線段上取一點(diǎn),使,連接,證明,得到,利用全等三角形的性質(zhì)與外角性質(zhì)得出,,證明,從而得到,即可證明結(jié)論.(1)解:在△ABC中,∵∠A=80°,∴,∠ABC、∠ACB的平分線交于點(diǎn)D,,,∠EDC=∠DBC+∠DCB;(2)解:在線段上取一點(diǎn),使,連接,如圖所示:平分,,在和中,,,,,,為的一個(gè)外角,,為的一個(gè)外角,,平分,,,∠A=2∠BDF,在和中,,,,,.【考點(diǎn)】本題考查三角形綜合,涉及到三角形內(nèi)角和定理的運(yùn)用、角平分線定義、外角性質(zhì)求角度、三角形全等的判定與性質(zhì)等知識點(diǎn),正確的做輔助線是解決問題的關(guān)鍵.4、詳見解析.【解析】【分析】過點(diǎn)A作BC的垂線,作出∠B的平分線,二者交點(diǎn)即為所求的點(diǎn).【詳解】如圖:∴P點(diǎn)即為所求【考點(diǎn)】本題考查了尺規(guī)作圖,熟練掌握垂線和角平分線的作圖步驟是解答本題的關(guān)鍵.5、(1)見解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質(zhì)可得∠B=∠ACD,由角平分線的性質(zhì)和外

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論