




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學上冊《全等三角形》專項練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,C為線段AE上一動點(不與點,重合),在AE同側分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連結PQ.以下結論錯誤的是(
)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP2、如圖,在和中,,,,線段BC的延長線交DE于點F,連接AF.若,,,則線段EF的長度為(
)A.4 B. C.5 D.3、如圖,已知,,,則的長為(
)A.7 B.3.5 C.3 D.24、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點M,連接OM,下列結論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個數為()A.4 B.3 C.2 D.15、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關系(
)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在△ABC中,AB=5,BC邊上的中線AD=4,則AC的長m的取值范圍是_______.2、如圖所示,在中,D是的中點,點A、F、D、E在同一直線上.請?zhí)砑右粋€條件,使(不再添其他線段,不再標注或使用其他字母),并給出證明.你添加的條件是______3、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.4、已知∠AOB=60°,以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內交于點P,以OP為邊作∠POC=15°,則∠BOC的度數為__________.5、如圖,已知△ABC與△DEF全等,且∠A=72°、∠B=45°、∠E=63°、BC=10,EF=10,那么∠D=_____度.三、解答題(5小題,每小題10分,共計50分)1、如圖,點B、C、D在同一直線上,△ABC、△ADE是等邊三角形,CE=5,CD=2(1)證明:△ABD≌△ACE;(2)求∠ECD的度數;(3)求AC的長.2、如圖,已知AB=AD,AC=AE,∠BAE=∠DAC.求證:∠C=∠E.3、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.4、如圖,在△ABC中,∠ACB=90°,用直尺和圓規(guī)在斜邊AB上作一點P,使得點P到點B的距離與點P到邊AC的距離相等.(保留作圖痕跡,不寫作法)5、如圖,∠A=∠D=90°,AC=DB,AC、DB相交于點O.求證:OB=OC.-參考答案-一、單選題1、D【解析】【分析】利用等邊三角形的性質,BC∥DE,再根據平行線的性質得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據內錯角相等,兩直線平行,得出C正確;根據∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點】本題考查了等邊三角形的性質、全等三角形的判定與性質,利用旋轉不變性,解題的關鍵是找到不變量.2、B【解析】【分析】證明,,根據全等三角形對應邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點】本題考查全等三角形的判定與性質、線段的和差等知識,是重要考點,掌握相關知識是解題關鍵.3、C【解析】【分析】利用全等三角形的性質求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點】本題主要考查了全等三角形的性質,熟知全等三角形對應邊相等是解題的關鍵.4、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據三角形全等的性質及角平分線的判定定理可進行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點O作OE⊥AC于點E,OF⊥BD于點F,BD與OA相交于點H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個數有4個;故選A.【考點】本題主要考查全等三角形的性質與判定及角平分線的判定定理,熟練掌握全等三角形的性質與判定及角平分線的判定定理是解題的關鍵.5、C【解析】【分析】根據△△,證得,=,再利用∥BC得到=,再根據三角形內角和定理即可得到結論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點】此題考查旋轉圖形的性質,等腰三角形的性質,兩直線平行內錯角相等,三角形的內角和定理.二、填空題1、3<m<13【解析】【分析】延長AD至E,使DE=AD=4,連接CE,利用SAS證明△ABD≌△ECD,可得CE=AB,再根據三角形的三邊的關系即可解決問題.【詳解】解:如圖,延長AD至E,使DE=AD=4,連接CE,∵AD是BC邊上的中線,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案為:3<m<13.【考點】此題考查了全等三角形的性質與判定,三角形的三邊的關系,解題的關鍵是利用已知條件構造全等三角形,然后利用三角形的三邊的關系解決問題.2、ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF)【解析】【分析】根據三角形全等的判定方法SAS或AAS或ASA定理添加條件,然后證明即可.【詳解】解:∵D是的中點,∴BD=DC①若添加ED=FD在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);故答案為:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【考點】本題考查了全等三角形的判定,熟練掌握三角形全等的判定方法是解題的關鍵.3、120【解析】【分析】根基三角形全等的性質得到∠C=∠C′=24°,再根據三角形的內角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點】此題考查三角形全等的性質定理:全等三角形的對應角相等,三角形的內角和定理.4、或【解析】【分析】以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內交于點P,則OP為的平分線,以OP為邊作,則為作或的角平分線,即可求解.【詳解】解:以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內交于點P,得到OP為的平分線,再以OP為邊作,則為作或的角平分線,所以或.故答案為:或.【考點】本題考查的是復雜作圖,主要要理解作圖是在作角的平分線,同時要考慮以OP為邊作的兩種情況,避免遺漏.5、【解析】【分析】△ABC中,根據三角形內角和定理求得∠C=63°,那么∠C=∠E.根據相等的角是對應角,相等的邊是對應邊得出△ABC≌△DFE,然后根據全等三角形的對應角相等即可求得∠D.【詳解】解:在△ABC中,∵∠A=72°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=63°,∵∠E=63°,∴∠C=∠E.∵△ABC與△DEF全等,BC=10,EF=10,∴△ABC≌△DFE,∴∠D=∠A=72°,故答案為72.【考點】本題考查了全等三角形的性質;注意:題目條件中△ABC與△DEF全等,但是沒有明確對應頂點.得出△ABC≌△DFE是解題的關鍵.三、解答題1、(1)見解析(2)60°(3)3【解析】【分析】(1)根據等邊三角形的性質利用SAS證明;(2)利用全等三角形的性質得到∠B=∠ACE=60°,計算即可得到答案;(3)利用全等的性質得到BD的長,再由等邊三角形的性質,即可得到AC的長.(1)證明:∵△ABC和△ADE是等邊三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=∠ACB=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE;(2)解:∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠DCE=180°-∠ACB-∠ACE=60°;(3)解:∵△ABD≌△ACE,∴BD=CE=5,∴BC=BD-CD=5-2=3,∴AC=BC=3.【考點】此題考查了全等三角形的判定及性質,熟記全等三角形的幾種判定定理:SSS,SAS,ASA,AAS,HL,并熟練應用是解題的關鍵.2、見解析.【解析】【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根據“SAS”可判斷△ABC≌△ADE,根據全等的性質即可得到∠C=∠E.【詳解】∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS),∴∠C=∠E.【考點】本題考查了全等三角形的判定與性質:判斷三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應角相等,對應邊相等.3、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據BD平分∠ABC,可得∠ABD=∠EBD,根據,可判定△ABD≌△EBD,根據全等三角形的性質可得:AD=ED,∠A=∠BED.再根據AD=CD,等量代換可得ED=CD,根據等邊對等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【詳解】證明:在線段BC上截取BE=BA,連接DE,如圖所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考點】本題主要考查全等三角形的判定和性質,解決本題的關鍵是要熟練掌握全等三角形的判定和性質.4、詳見解析【解析】【分析】先作∠ABC的角平分線BD,再過點D作AC的垂線交AB于P,則利用PD∥BC得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《藥品網絡銷售監(jiān)督管理辦法》考核題(含答案)
- 2006年7月國開電大法律事務??啤缎谭▽W(2)》期末紙質考試試題及答案
- 2025年【G1工業(yè)鍋爐司爐】作業(yè)考試題庫及G1工業(yè)鍋爐司爐考試試題(含答案)
- 北京地鐵消防知識培訓課件
- (2025)全科醫(yī)學醫(yī)師考試題庫及參考答案
- 化驗員知識培訓效果課件
- 化肥知識培訓感悟和收獲
- 查課件的最佳時機
- 消化內鏡中心護理操作并發(fā)癥的預防及處理規(guī)范考核試題及答案
- 柜員基礎知識培訓課件
- 【培訓課件】商務禮儀培訓
- 政府機關員工宿舍管理條例
- 難治性尿路感染中醫(yī)治療
- 消除三病母嬰傳播
- 銀行零售業(yè)務培訓
- 交叉持股合同范本
- 新課標語文整本書閱讀教學課件:童年(六下)
- 幼升小語文拼音測試卷
- 承建工程合作意向書2024年標準版
- 臨床護理應急演練腳本
- DL-T-1798-2018換流變壓器交接及預防性試驗規(guī)程
評論
0/150
提交評論