版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《軸對稱》專項(xiàng)攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、已知的周長是,,則下列直線一定為的對稱軸的是A.的邊的中垂線 B.的平分線所在的直線C.的邊上的中線所在的直線 D.的邊上的高所在的直線2、如圖已知,把一張長方形紙片ABCD沿EF折疊后D與BC的交點(diǎn)為G,D、C分別在M、N的位置上,有下列結(jié)論:①EF平分∠MED;②∠2=2∠3;③:④∠1+2∠3=180°,其中一定正確的個(gè)數(shù)是(
)A.1 B.2 C.3 D.43、一個(gè)三角形具備下列條件仍不是等邊三角形的是(
)A.一個(gè)角的平分線是對邊的中線或高線 B.兩邊相等,有一個(gè)內(nèi)角是60°C.兩角相等,且兩角的和是第三個(gè)角的2倍 D.三個(gè)內(nèi)角都相等4、已知點(diǎn)與點(diǎn)關(guān)于軸對稱,則點(diǎn)的坐標(biāo)為(
)A. B. C. D.5、如圖所示,已知△ABC(AC<AB<BC),用尺規(guī)在線段BC上確定一點(diǎn)P,使得PA+PC=BC,則符合要求的作圖痕跡是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,AB的垂直平分線l交AB于點(diǎn)M,P是l上一點(diǎn),PB平分∠MPN.若AB=2,則點(diǎn)B到直線PN的距離為__________.2、如圖,在中,,,以點(diǎn)為圓心,長為半徑作弧,交射線于點(diǎn),連接,則的度數(shù)是______.3、如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊ABC和等邊CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.則下列結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的有________.(填序號)4、已知:如圖,在中,點(diǎn)在邊上,,則_______度.5、如圖,已知O為△ABC三邊垂直平分線的交點(diǎn),且∠A=50°,則∠BOC的度數(shù)為_____度.三、解答題(5小題,每小題10分,共計(jì)50分)1、在中,BE,CD為的角平分線,BE,CD交于點(diǎn)F.(1)求證:;(2)已知.①如圖1,若,,求CE的長;②如圖2,若,求的大?。?、如圖,在中,,;點(diǎn)在上,.連接并延長交于.(1)求證:;(2)求證:;(3)若,與有什么數(shù)量關(guān)系?請說明理由.3、已知:如圖,,相交于點(diǎn)O,,.求證:(1);(2).4、如圖,已知∠AOB,作∠AOB的平分線OC,將直角尺DEMN如圖所示擺放,使EM邊與OB邊重合,頂點(diǎn)D落在OA邊上,DN邊與OC交于點(diǎn)P.(1)猜想DOP是三角形;(2)補(bǔ)全下面證明過程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=5、如圖,在正方形網(wǎng)格上的一個(gè)△ABC,且每個(gè)小正方形的邊長為1(其中點(diǎn)A,B,C均在網(wǎng)格上).(1)作△ABC關(guān)于直線MN的軸對稱圖形△A'B'C';(2)在MN上畫出點(diǎn)P,使得PA+PC最??;(3)求出△ABC的面積.-參考答案-一、單選題1、C【解析】【分析】首先判斷出是等腰三角形,AB是底邊,然后根據(jù)等腰三角形的性質(zhì)和對稱軸的定義判斷即可.【詳解】解:∵,,∴,∴是等腰三角形,AB是底邊,∴一定為的對稱軸的是的邊上的中線所在的直線,故選:C.【考點(diǎn)】本題考查了等腰三角形的判定和性質(zhì)以及對稱軸的定義,判斷出是等腰三角形,AB是底邊是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)折疊的性質(zhì)即可判斷①;根據(jù)平行線的性質(zhì)和折疊的性質(zhì)可得∠MEF=∠3,再根據(jù)三角形外角的性質(zhì)即可判斷②;由AD∥BC可得∠1+∠2=180°,然后結(jié)合②的結(jié)論即可判斷④,進(jìn)一步即可判斷③,進(jìn)而可得答案.【詳解】解:由折疊的性質(zhì)可得∠DEF=∠MEF,即EF平分∠MED,故①正確;∵AD∥BC,∴∠DEF=∠3,∵∠DEF=∠MEF,∴∠3=∠MEF,∴∠2=∠3+∠MEF=2∠3,故②正確;∵AD∥BC,∴∠1+∠2=180°,即∠1+2∠3=180°,故④正確;∴∠1+∠3=90°,故③錯(cuò)誤.綜上,正確的結(jié)論是①②④,共3個(gè).故選:C.【考點(diǎn)】本題考查了平行線的性質(zhì)、折疊的性質(zhì)、角平分線的定義以及三角形的外角性質(zhì)等知識(shí),屬于常考題型,熟練掌握基本知識(shí)是解題關(guān)鍵.3、A【解析】【分析】根據(jù)等邊三角形的判定方法即可解答.【詳解】選項(xiàng)A,一個(gè)角的平分線是對邊的中線或高線,能判定該三角形是等腰三角形,不能判斷該三角形是等邊三角形;
選項(xiàng)B,兩邊相等,有一個(gè)內(nèi)角是60°,根據(jù)有一個(gè)角為60°的等腰三角形是等邊三角形,即可判定該三角形是等邊三角形;選項(xiàng)C,兩角相等,且兩角的和是第三個(gè)角的2倍,根據(jù)三角形的內(nèi)角和定理可求得該三角形的三個(gè)內(nèi)角的度數(shù)都為60°,即可判定該三角形是等邊三角形;選項(xiàng)D,三個(gè)內(nèi)角都相等,根據(jù)三角形的內(nèi)角和定理可求得該三角形的三個(gè)內(nèi)角的度數(shù)都為60°,即可判定該三角形是等邊三角形.故選A.【考點(diǎn)】本題考查了等邊三角形的判定,熟練運(yùn)用等邊三角形的判定方法是解決問題的關(guān)鍵.4、B【解析】【分析】根據(jù)關(guān)于軸對稱的性質(zhì):橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即可得解.【詳解】由題意,得與點(diǎn)關(guān)于軸對稱點(diǎn)的坐標(biāo)是,故選:B.【考點(diǎn)】此題主要考查關(guān)于軸對稱的點(diǎn)坐標(biāo)的求解,熟練掌握,即可解題.5、C【解析】【分析】根據(jù)線段垂直平分線的性質(zhì)可得,作AB的垂直平分線,交BC于點(diǎn)P,則PB+PC=BC,進(jìn)而可以判斷.【詳解】解:作AB垂直平分線交BC于點(diǎn)P,連接PA,則PA=PB,所以PA+PC=PB+PC=BC.所以符合要求的作圖痕跡是C.故選:C.【考點(diǎn)】本題考查了作圖-復(fù)雜作圖,解決本題的關(guān)鍵是掌握線段垂直平分線的性質(zhì).二、填空題1、1【解析】【分析】根據(jù)線段垂直平分線的性質(zhì)得出BM=1,根據(jù)角平分線的性質(zhì)得到BN=BM=1,即可得出答案.【詳解】解:如圖,過點(diǎn)B作BC⊥PN,垂足為點(diǎn)C,∵AB的垂直平分線l交AB于點(diǎn)M,∴,BM⊥PM,∵PB平分∠MPN,BM⊥PM,BC⊥PN,∴BC=BM=1,∴點(diǎn)B到直線PN的距離為1,故答案為:1.【考點(diǎn)】本題考查了線段垂直平分線的性質(zhì)與角平分線的性質(zhì),能熟記線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等是解此題的關(guān)鍵.2、10°或100°【解析】【分析】分兩種情況畫圖,由作圖可知得,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理解答即可.【詳解】解:如圖,點(diǎn)即為所求;在中,,,,由作圖可知:,,;由作圖可知:,,,,.綜上所述:的度數(shù)是或.故答案為:或.【考點(diǎn)】本題考查了作圖復(fù)雜作圖,三角形內(nèi)角和定理,等腰三角形的判定與性質(zhì),解題的關(guān)鍵是掌握基本作圖方法.3、①②③【解析】【分析】根據(jù)等邊三角形的三邊都相等,三個(gè)角都是60°,可以證明ACD與BCE全等,根據(jù)全等三角形對應(yīng)邊相等可得AD=BE,所以①正確,對應(yīng)角相等可得∠CAD=∠CBE,然后證明ACP與BCQ全等,根據(jù)全等三角形對應(yīng)邊相等可得PC=PQ,從而得到CPQ是等邊三角形,再根據(jù)等腰三角形的性質(zhì)可以找出相等的角,從而證明PQ∥AE,所以②正確;根據(jù)全等三角形對應(yīng)邊相等可以推出AP=BQ,所以③正確,根據(jù)③可推出DP=EQ,再根據(jù)DEQ的角度關(guān)系DE≠DP.【詳解】解:∵等邊ABC和等邊CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在ACD與BCE中,,∴ACD≌BCE(SAS),∴AD=BE,故①小題正確;∵ACD≌BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在ACP與BCQ中,,∴ACP≌BCQ(ASA),∴AP=BQ,故③小題正確;PC=QC,∴PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小題正確;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小題錯(cuò)誤.綜上所述,正確的是①②③.故答案為:①②③.【考點(diǎn)】本題考查了等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),以及平行線的判定,需要多次證明三角形全等,綜合性較強(qiáng),但難度不是很大,是熱點(diǎn)題目,仔細(xì)分析圖形是解題的關(guān)鍵.4、40【解析】【分析】根據(jù)等邊對等角得到,再根據(jù)三角形外角的性質(zhì)得到,故,由三角形的內(nèi)角和即可求解的度數(shù).【詳解】解:∵,∴,∴,∵,∴,∴,故答案為:40.【考點(diǎn)】本題考查等腰三角形的性質(zhì)、三角形外角的性質(zhì)、三角形的內(nèi)角和,熟練掌握幾何知識(shí)并靈活運(yùn)用是解題的關(guān)鍵.5、100【解析】【分析】連接AO延長交BC于D,根據(jù)線段垂直平分線的性質(zhì)可得OB=OA=OC,再根據(jù)等腰三角形的等邊對等角和三角形的外角性質(zhì)可得∠BOC=2∠A,即可求解.【詳解】解:連接AO延長交BC于D,∵O為△ABC三邊垂直平分線的交點(diǎn),∴OB=OA=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∵∠BOD=∠OBA+∠OAB=2∠OAB,∠COD=∠OCA+∠OAC=2∠OAC,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC,∵∠BAC=50°,∴∠BOC=100°.三、解答題1、(1)證明見解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形內(nèi)角和定理和角平分線得出的度數(shù),再由三角形內(nèi)角和定理可求出的度數(shù),(2)在BC上取一點(diǎn)G使BG=BD,構(gòu)造(SAS),再證明,即可得,由此求出答案;(3)延長BA到P,使AP=FC,構(gòu)造(SAS),得PC=BC,,再由三角形內(nèi)角和可求,,進(jìn)而可得.【詳解】解:(1)、分別是與的角平分線,,,,(2)如解(2)圖,在BC上取一點(diǎn)G使BG=BD,由(1)得,,,∴,在與中,,∴(SAS)∴,∴,∴,∴在與中,,,,,;∵,,∴(3)如解(3)圖,延長BA到P,使AP=FC,,∴,在與中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【考點(diǎn)】本題考查的是角平分線的性質(zhì)、全等三角形的判定與性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出全等三角形是解答此題的關(guān)鍵.2、(1)見解析;(2)見解析;(3)若,則,理由見解析【解析】【分析】(1)首先利用SAS證明,即可得出結(jié)論;(2)利用全等三角形的性質(zhì)和等量代換即可得出,從而有,則結(jié)論可證;(3)直接根據(jù)等腰三角形三線合一得出,又因?yàn)?,則結(jié)論可證.【詳解】解答:(1)證明:,.在和中,,,;(2)證明:∵,.,,即,,;
(3)若,則.理由如下:,∴BE是中線,
.,.【考點(diǎn)】本題主要考查全等三角形的判定及性質(zhì),等腰三角形的性質(zhì),掌握全等三角形的判定及性質(zhì)和等腰三角形的性質(zhì)是解題的關(guān)鍵.3、(1)見詳解;(2)見詳解【解析】【分析】(1)根據(jù)AAS,即可證明;(2)根據(jù)全等三角形的性質(zhì)得OB=OC,進(jìn)而即可得到結(jié)論.【詳解】證明:(1)在與中,∵,∴(AAS);(2)∵,∴OB=OC,∴.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì)定理以及等腰三角形的性質(zhì),掌握AAS判定三角形全等,是解題的關(guān)鍵.4、等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD,見解析【解析】【分析】(1)三角形的種類有多種,從邊和角的關(guān)系上看常見的有:等腰三角形、等邊三角形、直角三角形、觀察此三角形即可大體猜想出三角形的類型;(2)根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),求得∠DOP=∠DPO,即可判斷三角形的形狀.【詳解】解:(1)我們猜想△DOP是等腰三角形;(2)補(bǔ)全下面證明過程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案為:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版房產(chǎn)交易居間與保險(xiǎn)代理合同范本
- 二零二五年度酒廠直銷合同范本
- 2025版多條款多場景跨境專利技術(shù)轉(zhuǎn)讓合同
- 二零二五年交通設(shè)施建設(shè)項(xiàng)目中介居間服務(wù)規(guī)范
- 二零二五年度化學(xué)原料藥生產(chǎn)安全與應(yīng)急處理合同
- 2025至2030年中國植物防脫洗發(fā)液行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略咨詢報(bào)告
- 二零二五年KTV音響設(shè)備升級及裝修施工協(xié)議
- 二零二五年度建筑工程勞務(wù)用工管理勞動(dòng)合同
- 二零二五年煤炭產(chǎn)業(yè)投資合作協(xié)議書
- 二零二五版生態(tài)園林假山制作與安裝服務(wù)合同
- 2025年胸腔穿刺操作精講
- 油田水泥封堵施工方案
- 合同制合同范例
- 河道水質(zhì)監(jiān)測與保潔方案
- DB35T 1801-2018 配電線路故障指示器通 用技術(shù)條件
- 浙江省湖州市2023-2024學(xué)年高二下學(xué)期6月期末考試歷史試題
- JJF 2137-2024 表面鉑電阻溫度計(jì)校準(zhǔn)規(guī)范
- 面向工業(yè)智能化時(shí)代的新一代工業(yè)控制體系架構(gòu)白皮書
- 浙江省二輕集團(tuán)招聘筆試題庫2024
- 2024新版藥品管理法培訓(xùn)課件
- 護(hù)士健康宣教指導(dǎo)手冊系列老年病房
評論
0/150
提交評論