




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學上冊《全等三角形》必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知,下面甲、乙、丙、丁四個三角形中,與全等的是(
)A.甲 B.乙 C.丙 D.丁2、如圖,OB平分∠AOC,D、E、F分別是射線OA、射線OB、射線OC上的點,D、E、F與O點都不重合,連接ED、EF若添加下列條件中的某一個.就能使DOE△FOE,你認為要添加的那個條件是(
)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE3、如圖,在和中,,,,線段BC的延長線交DE于點F,連接AF.若,,,則線段EF的長度為(
)A.4 B. C.5 D.4、如圖,在ABC和BDE中,點C在邊BD上,邊AC交邊BE于點F.若AC=BD,AB=ED,BC=BE,則∠ACB等于(
)A.∠EDB B.∠BED C.∠AFB D.2∠ABF5、如圖,△ABC是邊長為4的等邊三角形,點P在AB上,過點P作PE⊥AC,垂足為E,延長BC至點Q,使CQ=PA,連接PQ交AC于點D,則DE的長為()A.1 B.1.8 C.2 D.2.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,AD⊥BC于點D,過A作AEBC,且AE=AB,AB上有一點F,連接EF.若EF=AC,CD=4BD,則=_____.2、如圖,與的頂點A、B、D在同一直線上,,,,延長分別交、于點F、G.若,,則______.3、如圖是教科書中的一個片段,由畫圖我們可以得到△,判定這兩個三角形全等的依據是__.(1)畫;(2)分別以點,為圓心,線段,長為半徑畫弧,兩弧相交于點;(3)連接線段,.4、如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分別為E,D,AD=25,DE=17,則BE=_____.5、如圖,已知,,,則等于________.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知AB=AD,AC=AE,∠BAE=∠DAC.求證:∠C=∠E.2、已知:如圖,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC=∠DAE,連接BD,CE交于點F,連接AF.(1)求證:△ABD≌△ACE;(2)求證:FA平分∠BFE.3、如圖,在四邊形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC于E,AF⊥CD交CD的延長線于F.(1)求證:△ABE≌△ADF;(2)若BC=8cm,DF=3cm,求CD的長.4、如圖,在中,,點D在線段BC上運動(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點D從B向C運動時,逐漸變__________(填“大”或“小”),但與的度數和始終是__________度.(2)當DC的長度是多少時,,并說明理由.5、如圖,在中,.(1)如圖①所示,直線過點,于點,于點,且.求證:.(2)如圖②所示,直線過點,交于點,交于點,且,則是否成立?請說明理由.-參考答案-一、單選題1、B【解析】【分析】根據全等三角形的判定定理逐判定即可.【詳解】解:A.△ABC和甲所示三角形只有一邊一角對應相等,無法判定它們全等,故本選項不符合題意;B.△ABC和乙所示三角形有兩邊及其夾角對應相等,根據SAS可判定它們全等,故本選項符合題意;C.△ABC和丙所示三角形有兩邊一角相等,但不是對應的兩邊一角,無法判定它們全等,故本選項不符合題意;;D.△ABC和丁所示三角形有兩角對應相等,有一邊相等,但相等邊不是兩角的夾邊,所以兩角一邊不是對應相等,無法判定它們全等,故本選項不符合題意;;故選:B.2、D【解析】【分析】根據OB平分∠AOC得∠AOB=∠BOC,又因為OE是公共邊,根據全等三角形的判斷即可得出結果.【詳解】解:∵OB平分∠AOC∴∠AOB=∠BOC當△DOE≌△FOE時,可得以下結論:OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.A答案中OD與OE不是△DOE≌△FOE的對應邊,A不正確;B答案中OE與OF不是△DOE≌△FOE的對應邊,B不正確;C答案中,∠ODE與∠OED不是△DOE≌△FOE的對應角,C不正確;D答案中,若∠ODE=∠OFE,在△DOE和△FOE中,∴△DOE≌△FOE(AAS)∴D答案正確.故選:D.【考點】本題考查三角形全等的判斷,理解全等圖形中邊和角的對應關系是解題的關鍵.3、B【解析】【分析】證明,,根據全等三角形對應邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點】本題考查全等三角形的判定與性質、線段的和差等知識,是重要考點,掌握相關知識是解題關鍵.4、C【解析】【分析】根據全等三角形的判定與性質可得=,再根據三角形外角的性質即可求得答案.【詳解】解:在和中,,,,是的外角,,∴,故選:C.【考點】本題考查了全等三角形的判定與性質以及三角形的外角性質,熟練掌握全等三角形的判定與性質是解決本題的關鍵.5、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點】本題主要考查了等邊三角形的判定與性質,全等三角形的判定與性質,作輔助線構造全等三角形是解題的關鍵.二、填空題1、【解析】【分析】在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,∵AD⊥BC于點D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點】此題考查平行線的性質、全等三角形的判定與性質、有關面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關鍵.2、或110度【解析】【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【考點】本題考查了平行線的性質,全等三角形的判定與性質,以及三角形外角的性質,熟練掌握三角形的外角等于不相鄰的兩個內角和是解答本題的關鍵.3、【解析】【分析】根據全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點】本題考查了作圖?復雜作圖,全等三角形的判定等知識,解題的關鍵是理解題意,靈活應用所學知識解決問題.4、8【解析】【分析】可先證明△BCE≌△CAD,可求得CE=AD,結合條件可求得CD,則可求得BE.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=25,∵DE=17,∴CD=CE﹣DE=AD﹣DE=25﹣17=8,∴BE=CD=8;故答案為:8.【考點】本題主要考查全等三角形的判定和性質;證明三角形全等得出對應邊相等是解決問題的關鍵.5、【解析】【分析】根據提示可找到一組公共邊OP,從而根據SSS判定△POB≌△POA,根據全等三角形的性質即可得到結論.【詳解】在和中,∵,,,,故答案為40°.【考點】本題考查了全等三角形的判定及性質,熟練掌握基本的性質和判定是正確解題的關鍵.三、解答題1、見解析.【解析】【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根據“SAS”可判斷△ABC≌△ADE,根據全等的性質即可得到∠C=∠E.【詳解】∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS),∴∠C=∠E.【考點】本題考查了全等三角形的判定與性質:判斷三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應角相等,對應邊相等.2、(1)見解析(2)見解析【解析】【分析】(1)根據SAS證明結論即可;(2)作AM⊥BD于M,作AN⊥CE于N.由(1)可得BD=CE,S△BAD=S△CAE,然后根據角平分線的性質即可解決問題.(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)證明:如圖,作AM⊥BD于M,作AN⊥CE于N.由△BAD≌△CAE,∴BD=CE,S△BAD=S△CAE,∵,∴AM=AN,∴點A在∠BFE平分線上,∴FA平分∠BFE.【考點】本題考查全等三角形的判定和性質、三角形的面積,解題的關鍵是熟練掌握全等三角形的判定和性質,學會轉化的思想,巧用等積法進行證明.3、(1)證明見解析(2)2cm【解析】【分析】(1)由角平分線的性質可知,證明,進而結論得證;(2)由,可得,證明,則,根據,計算求解即可.(1)證明:∵AC平分∠BCD,AE⊥BC,AF⊥CD,∴,在和中,∵,∴,∴.(2)解:∵,∴,在和中,∵,∴,∴,∴,∴的長為2cm.【考點】本題考查了角平分線的性質,全等三角形的判定與性質等知識.解題的關鍵在于找出三角形全等的條件.4、(1)小;140(2)當DC=2時,△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內角和即可得出結論;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠ADB=180°,設∠BAD=x°,∠BDA=y°,∴40°+x+y=180°,∴y=140-x(0<x<100),當點D從點B向C運動時,x增大,∴y減小,+=180°-故答案為:小,140;(2)當DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);【考點】此題主要考查學生對等腰三角形的判定與性質,全等三角形的判定與性質,三角形外角的性質等知識點的理解和掌握,三角形的內角和公式,解本題的關鍵是分類討論.5、(1)見解析;(2)仍然成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法治思想面試題及答案
- 護士交班考試題及答案
- 鄉(xiāng)鎮(zhèn)副職面試題及答案
- 預防感冒面試題及答案
- 恐懼死亡測試題及答案
- 家電公司法律事務管理辦法
- 家電公司聲譽風險管理規(guī)定
- 2.4圓周角(第1課時圓周角定理)(教學課件)數學蘇科版九年級上冊
- 保安執(zhí)勤裝備使用課件
- 保安崗位知識培訓課件
- GB/T 13477.17-2017建筑密封材料試驗方法第17部分:彈性恢復率的測定
- 送達地址確認書(完整版)
- 四川滑雪場商業(yè)綜合體設計方案文本含個方案 知名設計院
- 日立電梯常用零配件價格清單
- 單位人事證明(共7篇)
- 水泵設備單機試運轉記錄
- 保密管理-公司涉密人員保密自查表
- 日常安全檢查記錄
- 速成意大利語(上)
- 壓型鋼板組合樓板設計計算表格
- Q∕SY 1535-2012 海底管道混凝土配重層技術規(guī)范
評論
0/150
提交評論