難點詳解人教版8年級數(shù)學上冊《全等三角形》單元測評試題(含詳細解析)_第1頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》單元測評試題(含詳細解析)_第2頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》單元測評試題(含詳細解析)_第3頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》單元測評試題(含詳細解析)_第4頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》單元測評試題(含詳細解析)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知銳角,如圖,(1)在射線上取點,,分別以點為圓心,,長為半徑作弧,交射線于點,;(2)連接,交于點.根據(jù)以上作圖過程及所作圖形,下列結(jié)論錯誤的是(

)A. B.C.若,則 D.點在的平分線上2、如圖,已知圖中的兩個三角形全等,則∠α的度數(shù)是()A.72° B.60° C.58° D.50°3、如圖,在和中,,,,則(

)A.30° B.40° C.50° D.60°4、如圖,已知在四邊形中,,平分,,,,則四邊形的面積是(

)A.24 B.30 C.36 D.425、如圖,在和中,點,,,在同一直線上,,,只添加一個條件,能判定的是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,BE⊥AC,垂足為D,且AD=CD,BD=ED.若∠ABC=54°,則∠E=________°.2、如圖,的三邊,,的長分別是10,15,20,其三條角平分線相交于點O,連接OA,OB,OC,將分成三個三角形,則等于__________.3、如圖,四邊形ABCD≌四邊形A′B′C′D′,則∠A的大小是______.4、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.5、如圖所示,中,.直線l經(jīng)過點A,過點B作于點E,過點C作于點F.若,則__________.三、解答題(5小題,每小題10分,共計50分)1、在中,,,為直線上一點,連接,過點作交于點,交于點,在直線上截取,連接.(1)當點,都在線段上時,如圖①,求證:;(2)當點在線段的延長線上,點在線段的延長線上時,如圖②;當點在線段的延長線上,點在線段的延長線上時,如圖③,直接寫出線段,,之間的數(shù)量關(guān)系,不需要證明.2、已知Rt△ABC中,∠BAC=90°,AB=AC,點E為△ABC內(nèi)一點,連接AE,CE,CE⊥AE,過點B作BD⊥AE,交AE的延長線于D.(1)如圖1,求證BD=AE;(2)如圖2,點H為BC中點,分別連接EH,DH,求∠EDH的度數(shù);(3)如圖3,在(2)的條件下,點M為CH上的一點,連接EM,點F為EM的中點,連接FH,過點D作DG⊥FH,交FH的延長線于點G,若GH:FH=6:5,△FHM的面積為30,∠EHB=∠BHG,求線段EH的長.3、如圖,是邊長為2的等邊三角形,是頂角為120°的等腰三角形,以點為頂點作,點、分別在、上.(1)如圖①,當時,則的周長為______;(2)如圖②,求證:.4、已知:如圖,點A,D,C,B在同一條直線上,AD=BC,AE=BF,CE=DF,求證:(1)△AEC≌△BFD(2)DE=CF5、如圖,已知:正方形,點,分別是,上的點,連接,,,且,求證:.-參考答案-一、單選題1、C【解析】【分析】根據(jù)題意可知,即可推斷結(jié)論A;先證明,再證明即可證明結(jié)論B;連接OP,可證明可證明結(jié)論D;由此可知答案.【詳解】解:由題意可知,,,故選項A正確,不符合題意;在和中,,,在和中,,,,故選項B正確,不符合題意;連接OP,,,在和中,,,,點在的平分線上,故選項D正確,不符合題意;若,,則,而根據(jù)題意不能證明,故不能證明,故選項C錯誤,符合題意;故選:C.【考點】本題考查角平分線的判定,全等三角形的判定與性質(zhì),明確以某一半徑畫弧時,準確找到相等的線段是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)∠α是a、c邊的夾角,50°的角是a、c邊的夾角,然后根據(jù)兩個三角形全等寫出即可.【詳解】解:∵∠α是a、c邊的夾角,50°的角是a、c邊的夾角,又∵兩個三角形全等,∴∠α的度數(shù)是50°.故選:D.【考點】本題考查了全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解答本題的關(guān)鍵.全等三角形的對應(yīng)角相等,對應(yīng)邊相等.對應(yīng)邊的對角是對應(yīng)角,對應(yīng)角的對邊是對應(yīng)邊.3、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關(guān)鍵在于找出角度的數(shù)量關(guān)系.4、B【解析】【分析】過D作DE⊥AB交BA的延長線于E,根據(jù)角平分線的性質(zhì)得到DE=CD=4,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】如圖,過D作DE⊥AB交BA的延長線于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四邊形的面積故選B.【考點】本題考查了角平分線的性質(zhì),三角形的面積的計算,正確的作出輔助線是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)三角形全等的判定做出選擇即可.【詳解】A、,不能判斷,選項不符合題意;B、,利用SAS定理可以判斷,選項符合題意;C、,不能判斷,選項不符合題意;D、,不能判斷,選項不符合題意;故選:B.【考點】本題考查三角形全等的判定,根據(jù)SSS、SAS、ASA、AAS判斷三角形全等,找出三角形全等的條件是解答本題的關(guān)鍵.二、填空題1、27【解析】【詳解】∵BE⊥AC,AD=CD,∴AB=CB,即△ABC為等腰三角形,∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABE=27°.故答案是:27.2、2:3:4【解析】【分析】過點O分別向三邊作垂線段,通過角平分線的性質(zhì)得到三條垂線段長度相等,再通過面積比等于底邊長度之比得到答案.【詳解】解:過點O分別向BC、BA、AC作垂線段交于D、E、F三點.∵CO、BO、AO分別平分∴∵,,∴故答案為:2:3:4【考點】本題考查了角平分線的性質(zhì),往三角形的三邊作垂線段并得到面積之比等于底之比是解題關(guān)鍵.3、95°【解析】【分析】根據(jù)兩個多邊形全等,則對應(yīng)角相等四邊形以及內(nèi)角和即可完成【詳解】∵四邊形ABCD≌四邊形A′B′C′D′∴∠D=∠D′=130゜∵四邊形ABCD的內(nèi)角和為360゜∴∠A=360゜-∠B-∠C-∠D=95゜故答案為:95゜【考點】本題考查了多邊形全等的性質(zhì)、多邊形的內(nèi)角和定理,掌握多邊形全等的性質(zhì)是關(guān)鍵.4、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質(zhì),解一元一次方程等知識點的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.5、7【解析】【分析】根據(jù)全等三角形來實現(xiàn)相等線段之間的關(guān)系,從而進行計算,即可得到答案;【詳解】解:∵BE⊥l,CF⊥l,∴∠AEB=∠CFA=90°.∴∠EAB+∠EBA=90°.又∵∠BAC=90°,∴∠EAB+∠CAF=90°.∴∠EBA=∠CAF.在△AEB和△CFA中∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,∴△AEB≌△CFA.∴AE=CF,BE=AF.∴AE+AF=BE+CF.∴EF=BE+CF.∵,∴;故答案為:7.【考點】本題考查了全等三角形的判定和性質(zhì),余角的性質(zhì),解題的關(guān)鍵是熟練掌握所學的知識,正確的證明三角形全等.三、解答題1、(1)見解析;(2)圖②:;圖③:【解析】【分析】(1)過點作交的延長線于點.證明,根據(jù)全等三角形的性質(zhì)可得,.再證,由此即可證得結(jié)論;(2)圖②:,類比(1)中的方法證明即可;圖③:,類比(1)中的方法證明即可.【詳解】(1)證明:如圖,過點作交的延長線于點.0∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴.∴.∵,,∴.在和中,∴.∴.∵,∴.(2)圖②:.證明:過點作交于點.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴,∵∴.∴.∵,,∴.在和中,∴.∴.∵,∴.圖③:.證明:如圖,過點作交的延長線于點.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴.∴.∵,,∴.在和中,∴.∴.∵,∴.【考點】本題是全等三角形的綜合題,正確作出輔助線,構(gòu)造全等三角形是解決問題的關(guān)鍵.2、(1)見解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根據(jù)全等三角形的判定得出△CAE≌△ABD,進而利用全等三角形的性質(zhì)得出AE=BD即可;(2)根據(jù)全等三角形的判定得出△AEH≌△BDH,進而利用全等三角形的性質(zhì)解答即可;(3)過點M作MS⊥FH于點S,過點E作ER⊥FH,交HF的延長線于點R,過點E作ET∥BC,根據(jù)全等三角形判定和性質(zhì)解答即可.【詳解】證明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE與△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)連接AH∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH與△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°即∠EHD=90°,∴∠EDH=∠DEH=;(3)過點M作MS⊥FH于點S,過點E作ER⊥FH,交HF的延長線于點R,過點E作ET∥BC,交HR的延長線于點T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠EHR+∠DHG=90°,∴∠HDG=∠HER在△DHG與△HER中∴△DHG≌△HER(AAS),∴HG=ER,∵ET∥BC,∴∠ETF=∠BHG,∠EHB=∠HET,∠ETF=∠FHM,∵∠EHB=∠BHG,∴∠HET=∠ETF,∴HE=HT,在△EFT與△MFH中,∴△EFT≌△MFH(AAS),∴HF=FT,∴,∴ER=MS,∴HG=ER=MS,設(shè)GH=6k,F(xiàn)H=5k,則HG=ER=MS=6k,,k=,∴FH=5,∴HE=HT=2HF=10.【考點】本題考查全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學會利用數(shù)形結(jié)合的思想思考問題,屬于壓軸題.3、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM≌△CDN,進而得出△DMN是等邊三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可解決問題;(2)延長至點,使得,連接,首先證明,再證明,得出,進而得出結(jié)果即可.【詳解】解:(1)∵是等邊三角形,,,∴是等邊三角形,,則,∵是頂角的等腰三角形,,,在和中,,,,∵,∴是等邊三角形,,,,∴的周長.(2)如圖,延長至點,使得,連接,∵是等邊三角形,是頂角的等腰三角形,,,,,在和中,,,,,∵,,在和中,.,又∵,.【考點】本題考查了全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì)及等腰三角形的性質(zhì),掌握全等三角形的性質(zhì)與判定,等邊三角形及等腰三角形的性質(zhì)是解題的關(guān)鍵.4、(1)見解析(2)見解析【解析】【分析】(1)由線段的和差可得AC=BD,繼而利用“SSS”即可求證結(jié)論;(2)由(1)可知∠A=∠B,繼而利用“SAS”求證△AED≌△BFC,根據(jù)全等三角形的性質(zhì)即可求證結(jié)論.(1)證明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD,在△AEC和△BFD中,

∴△AEC≌△BFD(SSS),(2)由(1)可知△AEC≌△BFD,∴∠A=∠B,在△AED和△BFC中,,∴△AED≌△BFC(SAS),∴DE=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論