魯?shù)榭h2025屆中考沖刺卷數(shù)學試題含解析_第1頁
魯?shù)榭h2025屆中考沖刺卷數(shù)學試題含解析_第2頁
魯?shù)榭h2025屆中考沖刺卷數(shù)學試題含解析_第3頁
魯?shù)榭h2025屆中考沖刺卷數(shù)學試題含解析_第4頁
魯?shù)榭h2025屆中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

魯?shù)榭h2025屆中考沖刺卷數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣162.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.3.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘4.計算(-18)÷9的值是()A.-9 B.-27 C.-2 D.25.有四包真空包裝的火腿腸,每包以標準質量450g為基準,超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù).下面的數(shù)據(jù)是記錄結果,其中與標準質量最接近的是()A.+2 B.﹣3 C.+4 D.﹣16.如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F(xiàn),則DE的長是()A. B. C.1 D.7.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.8.計算﹣的結果為()A. B. C. D.9.如圖,圓O是等邊三角形內切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°10.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是▲.12.一般地,當α、β為任意角時,sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα?cosβ+cosα?sinβ;sin(α﹣β)=sinα?cosβ﹣cosα?sinβ.例如sin90°=sin(60°+30°)=sin60°?cos30°+cos60°?sin30°==1.類似地,可以求得sin15°的值是_______.13.為慶?!傲弧眱和?jié),某幼兒園舉行用火柴棒擺“金魚”比賽.如圖所示,按照這樣的規(guī)律,擺第n個圖,需用火柴棒的根數(shù)為_______________.14.已知拋物線y=x2上一點A,以A為頂點作拋物線C:y=x2+bx+c,點B(2,yB)為拋物線C上一點,當點A在拋物線y=x2上任意移動時,則yB的取值范圍是_________.15.若m2﹣2m﹣1=0,則代數(shù)式2m2﹣4m+3的值為.16.如圖,在網格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.三、解答題(共8題,共72分)17.(8分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數(shù)學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)18.(8分)已知關于的方程有兩個實數(shù)根.求的取值范圍;若,求的值;19.(8分)先化簡(-a+1)÷,并從0,-1,2中選一個合適的數(shù)作為a的值代入求值.20.(8分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HF與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米).(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)21.(8分)已知:在⊙O中,弦AB=AC,AD是⊙O的直徑.求證:BD=CD.22.(10分)“C919”大型客機首飛成功,激發(fā)了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結果保留小數(shù)點后一位)23.(12分)已知:如圖,A、C、F、D在同一直線上,AF=DC,AB=DE,BC=EF,求證:△ABC≌△DEF.24.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.(1)求證:∠BDC=∠A;(2)若CE=4,DE=2,求AD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

先把原式化為2x÷22y×23的形式,再根據(jù)同底數(shù)冪的乘法及除法法則進行計算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.本題考查的是同底數(shù)冪的乘法及除法運算,根據(jù)題意把原式化為2x÷22y×23的形式是解答此題的關鍵.2、D【解析】

根據(jù)有兩個角對應相等的三角形相似,以及根據(jù)兩邊對應成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.點評:本題考查了相似三角形的判定,利用了有兩個角對應相等的三角形相似,兩邊對應成比例且夾角相等的兩個三角形相似.3、D【解析】分析:根據(jù)圖象得出相關信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關鍵.4、C【解析】

直接利用有理數(shù)的除法運算法則計算得出答案.【詳解】解:(-18)÷9=-1.

故選:C.此題主要考查了有理數(shù)的除法運算,正確掌握運算法則是解題關鍵.5、D【解析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質量是-1的工件最接近標準工件.故選D.6、D【解析】

過F作FH⊥AE于H,根據(jù)矩形的性質得到AB=CD,AB//CD,推出四邊形AECF是平行四邊形,根據(jù)平行四邊形的性質得到AF=CE,根據(jù)相似三角形的性質得到,于是得到AE=AF,列方程即可得到結論.【詳解】解:如圖:解:過F作FH⊥AE于H,四邊形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故選D.本題主要考查平行四邊形的性質及三角形相似,做合適的輔助線是解本題的關鍵.7、C【解析】試題解析:A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C.既是中心對稱圖又是軸對稱圖形,故本選項正確;D.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.8、A【解析】

根據(jù)分式的運算法則即可【詳解】解:原式=,故選A.本題主要考查分式的運算。9、D【解析】

由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數(shù)值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).10、D【解析】

由EF⊥BD,∠1=60°,結合三角形內角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,

∴∠D=180°-∠DEF-∠1=30°.

∵AB∥CD,

∴∠2=∠D=30°.

故選D.本題考查平行線的性質以及三角形內角和為180°,解題關鍵是根據(jù)平行線的性質,找出相等、互余或互補的角.二、填空題(本大題共6個小題,每小題3分,共18分)11、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個不相等的實數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關于k的方程,解方程,結合一元二次方程的定義即可求解:∵有兩個不相等的實數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.12、.【解析】試題分析:sin15°=sin(60°﹣45°)=sin60°?cos45°﹣cos60°?sin45°==.故答案為.考點:特殊角的三角函數(shù)值;新定義.13、6n+1.【解析】尋找規(guī)律:不難發(fā)現(xiàn),后一個圖形比前一個圖形多6根火柴棒,即:第1個圖形有8根火柴棒,第1個圖形有14=6×1+8根火柴棒,第3個圖形有10=6×1+8根火柴棒,……,第n個圖形有6n+1根火柴棒.14、ya≥1【解析】

設點A的坐標為(m,n),由題意可知n=m1,從而可知拋物線C為y=(x-m)1+n,化簡為y=x1-1mx+1m1,將x=1代入y=x1-1mx+1m1,利用二次函數(shù)的性質即可求出答案.【詳解】設點A的坐標為(m,n),m為全體實數(shù),

由于點A在拋物線y=x1上,

∴n=m1,

由于以A為頂點的拋物線C為y=x1+bx+c,

∴拋物線C為y=(x-m)1+n

化簡為:y=x1-1mx+m1+n=x1-1mx+1m1,

∴令x=1,

∴ya=4-4m+1m1=1(m-1)1+1≥1,

∴ya≥1,

故答案為ya≥1本題考查了二次函數(shù)的性質,解題的關鍵是根據(jù)題意求出ya=4-4m+1m1=1(m-1)1+1.15、1【解析】試題分析:先求出m2﹣2m的值,然后把所求代數(shù)式整理出已知條件的形式并代入進行計算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案為1.考點:代數(shù)式求值.16、【解析】

如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.三、解答題(共8題,共72分)17、觀景亭D到南濱河路AC的距離約為248米.【解析】

過點D作DE⊥AC,垂足為E,設BE=x,根據(jù)AE=DE,列出方程即可解決問題.【詳解】過點D作DE⊥AC,垂足為E,設BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.18、(1);(2)k=-3【解析】

(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當x1+x2≥0時,則有x1+x2=x1·x2-1,即2(k-1)=k2-1;②當x1+x2<0時,則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【詳解】解:(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當x1+x2≥0時,則有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合題意,舍去②當x1+x2<0時,則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵∴k=-3綜合①、②可知k=-3一元二次方程根與系數(shù)關系,根判別式.19、1.【解析】試題分析:首先把括號的分式通分化簡,后面的分式的分子分解因式,然后約分化簡,接著計算分式的乘法,最后代入數(shù)值計算即可求解.試題解析:原式===;當a=0時,原式=1.考點:分式的化簡求值.20、3.05米.【解析】

延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【詳解】延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°=,∴FG=2.165,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.考點:解直角三角形的應用.21、證明見解析【解析】

根據(jù)AB=AC,得到,于是得到∠ADB=∠ADC,根據(jù)AD是⊙O的直徑,得到∠B=∠C=90°,根據(jù)三角形的內角和定理得到∠BAD=∠DAC,于是得到結論.【詳解】證明:∵AB=AC,∴,∴∠ADB=∠ADC,∵AD是⊙O的直徑,∴∠B=∠C=90°,∴∠BAD=∠DAC,∴,∴BD=CD.本題考查了圓周角定理,熟記圓周角定理是解題的關鍵.22、線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【解析】試題分析:在Rt△BED中可先求得BE的長,過C作CF⊥AE于點F,則可求得AF的長,從而可求得EF的長,即可求得CD的長.試題解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE?tan∠BDE≈18.75(cm),如圖,過C作AE的垂線,垂足為F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四邊形CDEF為矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論