基礎(chǔ)強(qiáng)化京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷及完整答案詳解(全優(yōu))_第1頁(yè)
基礎(chǔ)強(qiáng)化京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷及完整答案詳解(全優(yōu))_第2頁(yè)
基礎(chǔ)強(qiáng)化京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷及完整答案詳解(全優(yōu))_第3頁(yè)
基礎(chǔ)強(qiáng)化京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷及完整答案詳解(全優(yōu))_第4頁(yè)
基礎(chǔ)強(qiáng)化京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷及完整答案詳解(全優(yōu))_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與所在直線的位置關(guān)系是(

)A.相交 B.相離 C.相切 D.無(wú)法判斷2、在中,AC=4,BC=3,則cosA的值等于(

)A. B. C.或 D.或3、為了美觀,在加工太陽(yáng)鏡時(shí)將下半部分輪廓制作成拋物線的形狀(如圖所示),對(duì)應(yīng)的兩條拋物線關(guān)于軸對(duì)稱,軸,,最低點(diǎn)在軸上,高,,則右輪廓所在拋物線的解析式為(

)A. B. C. D.4、如圖,點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,點(diǎn)C在第四象限,∠ACB=90°.點(diǎn)D是軸正半軸上一點(diǎn),AC平分∠BAD,E是AD的中點(diǎn),反比例函數(shù)()的圖象經(jīng)過(guò)點(diǎn)A,E.若△ACE的面積為6,則的值為(

)A. B. C. D.5、如圖,Rt△ABC中,,,,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿AB向B點(diǎn)運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.46、如圖,點(diǎn)D、E分別在△ABC的邊BA、CA的延長(zhǎng)線上,且DE∥BC,已知AE=3,AC=6,AD=2,則BD的長(zhǎng)為()A.4 B.6 C.7 D.8二、多選題(7小題,每小題2分,共計(jì)14分)1、運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過(guò)的時(shí)間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對(duì)稱軸是直線C.足球被踢出9s時(shí)落地D.足球被踢出1.5s時(shí),距離地面的高度是11m2、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點(diǎn).下列結(jié)論中正確的是(

)A.拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)是B.C.若拋物線經(jīng)過(guò)點(diǎn),則關(guān)于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個(gè)單位,則新拋物線的表達(dá)式為3、下列說(shuō)法中,不正確的是(

)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對(duì)的弦C.弦的垂線必經(jīng)過(guò)這條弦所在圓的圓心D.在一個(gè)圓內(nèi)平分一條弧和平分它所對(duì)的弦的直線必經(jīng)過(guò)這個(gè)圓的圓心4、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(

)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=5、在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,且a=5,b=12,c=13,下面四個(gè)式子中正確的有()A.sinA= B.cosA= C.tanA= D.sinB=6、已知Rt△ABC中,∠C=90°,AC=2,BC=3,則下列各式中,不正確的是()A.sinB= B.cosB= C.tanB= D.以上都不對(duì)7、如圖,反比例函數(shù)與一次函數(shù)的圖象交于A,B兩點(diǎn),一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A.下列結(jié)論正確的是(

)A.B.點(diǎn)B的坐標(biāo)為C.連接OB,則D.點(diǎn)C為y軸上一動(dòng)點(diǎn),當(dāng)△ABC的周長(zhǎng)最小時(shí),點(diǎn)C的坐標(biāo)是第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、如圖1是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_(kāi)____.2、如圖,在四邊形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),過(guò)點(diǎn)E作AB的垂線,過(guò)點(diǎn)F作CD的垂線,兩垂線交于點(diǎn)G,連接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直線互相垂直,的值為_(kāi)__.3、我們用符號(hào)表示不大于的最大整數(shù).例如:,.那么:(1)當(dāng)時(shí),的取值范圍是______;(2)當(dāng)時(shí),函數(shù)的圖象始終在函數(shù)的圖象下方.則實(shí)數(shù)的范圍是______.4、已知點(diǎn)A(3,a)、B(-1,b)在函數(shù)的圖像上,那么a___b(填“>”或“=”或“<”)5、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,則GD=_______cm.6、若函數(shù)圖像與x軸的兩個(gè)交點(diǎn)坐標(biāo)為和,則__________.7、如圖,二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),它的對(duì)稱軸為直線x=1,則下列結(jié)論中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一個(gè)根在2,3之間,正確的有_______(填序號(hào)).四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽(yáng)光恰好從窗戶的最高點(diǎn)C射進(jìn)房間的地板F處,中午太陽(yáng)光恰好能從窗戶的最低點(diǎn)D射進(jìn)房間的地板E處,小明測(cè)得窗子距地面的高度OD=1m,窗高CD=1.5m,并測(cè)得OE=1m,OF=5m,求圍墻AB的高度.2、已知,且,求x,y的值.3、某校一棵大樹(shù)發(fā)生一定的傾斜,該樹(shù)與地面的夾角.小明測(cè)得某時(shí)大樹(shù)的影子頂端在地面處,此時(shí)光線與地面的夾角;又過(guò)了一段時(shí)間,測(cè)得大樹(shù)的影子頂端在地面處,此時(shí)光線與地面的夾角,若米,求該樹(shù)傾斜前的高度(即的長(zhǎng)度).(結(jié)果保留一位小數(shù),參考數(shù)據(jù):,,,).4、某化工材料經(jīng)售公司購(gòu)進(jìn)了一種化工原料,進(jìn)貨價(jià)格為每千克30元.物價(jià)部門(mén)規(guī)定其銷售單價(jià)不得高于每千克70元,也不得低于30元.市場(chǎng)調(diào)查發(fā)現(xiàn):?jiǎn)蝺r(jià)每千克70元時(shí)日均銷售;單價(jià)每千克降低一元,日均多售.在銷售過(guò)程中,每天還要支出其他費(fèi)用500元(天數(shù)不足一天時(shí),按一天計(jì)算).(1)如果日均獲利1950元,求銷售單價(jià);(2)銷售單價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)為多少.5、如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)C,與邊AB交于點(diǎn)D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點(diǎn)P(a,0)是x軸上一動(dòng)點(diǎn),求|PC-PD|最大時(shí)a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點(diǎn)M,平面內(nèi)是否存在點(diǎn)N,使得四邊形CAMN為矩形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.6、據(jù)說(shuō),在距今2500多年前,古希臘數(shù)學(xué)家就已經(jīng)較準(zhǔn)確地測(cè)出了埃及金字塔的高度,操作過(guò)程大致如下:如圖所示,設(shè)AB是金字塔的高,在某一時(shí)刻,陽(yáng)光照射下的金字塔在底面上投下了一個(gè)清晰的陰影,塔頂A的影子落在地面上的點(diǎn)C處,金字塔底部可看作方正形FGHI,測(cè)得正方形邊長(zhǎng)FG長(zhǎng)為160米,點(diǎn)B在正方形的中心,BC與金字塔底部一邊垂直于點(diǎn)K,與此同時(shí),直立地面上的一根標(biāo)桿DO留下的影子是OE,射向地面的太陽(yáng)光線可看作平行線(AC∥DE),此時(shí)測(cè)得標(biāo)桿DO長(zhǎng)為1.2米,影子OE長(zhǎng)為2.7米,KC長(zhǎng)為250米,求金字塔的高度AB及斜坡AK的坡度(結(jié)果均保留四個(gè)有效數(shù)字)-參考答案-一、單選題1、A【解析】【分析】過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點(diǎn)為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點(diǎn)】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.2、C【解析】【分析】分兩種情況:①AB為斜邊;②AC為斜邊,根據(jù)勾股定理求出AB長(zhǎng),然后根據(jù)余弦定義即可求解.【詳解】由題意,存在兩種情況:①當(dāng)AB為斜邊時(shí),∠C=90o,∵AC=4,BC=3,∴AB=,∴cosA=;②當(dāng)AC為斜邊時(shí),∠B=90o,∵AC=4,BC=3,∴AB=,∴cosA=,綜上,cosA的值等于或,故選:C.【考點(diǎn)】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義,并注意分類討論是解答本題的關(guān)鍵.3、B【解析】【分析】利用B、D關(guān)于y軸對(duì)稱,CH=1cm,BD=2cm可得到D點(diǎn)坐標(biāo)為(1,1),由AB=4cm,最低點(diǎn)C在x軸上,則AB關(guān)于直線CH對(duì)稱,可得到左邊拋物線的頂點(diǎn)C的坐標(biāo)為(-3,0),于是得到右邊拋物線的頂點(diǎn)C的坐標(biāo)為(3,0),然后設(shè)頂點(diǎn)式利用待定系數(shù)法求拋物線的解析式.【詳解】∵高CH=1cm,BD=2cm,且B、D關(guān)于y軸對(duì)稱,∴D點(diǎn)坐標(biāo)為(1,1),∵AB∥x軸,AB=4cm,最低點(diǎn)C在x軸上,∴AB關(guān)于直線CH對(duì)稱,∴左邊拋物線的頂點(diǎn)C的坐標(biāo)為(-3,0),∴右邊拋物線的頂點(diǎn)F的坐標(biāo)為(3,0),設(shè)右邊拋物線的解析式為y=a(x-3)2,把D(1,1)代入得1=a×(1-3)2,解得a=,∴右邊拋物線的解析式為y=(x-3)2,故選:B.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用:利用實(shí)際問(wèn)題中的數(shù)量關(guān)系與直角坐標(biāo)系中線段對(duì)應(yīng)起來(lái),再確定某些點(diǎn)的坐標(biāo),然后利用待定系數(shù)法確定拋物線的解析式,再利用拋物線的性質(zhì)解決問(wèn)題.4、C【解析】【分析】過(guò)A作,連接OC、OE,根據(jù)點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,∠ACB=90°,AC平分∠BAD得出,從而得出三角形AEC的面積與三角形AOE的面積相等,設(shè),根據(jù)E是AD的中點(diǎn)得出得出三角形OAE的面積等于四邊形AFGE的面積建立等量關(guān)系求解.【詳解】解:過(guò)A作,連接OC,連接OE:∵點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,∠ACB=90°∴又∵AC平分∠BAD∴∴∴設(shè),根據(jù)E是AD的中點(diǎn)得出:∴解得:故答案選:C.【考點(diǎn)】本題考查反比例函數(shù)與幾何綜合,有一定的難度.將三角形AEC的面積轉(zhuǎn)化與三角形AOE的面積相等是解題關(guān)鍵.5、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結(jié)果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,所以△EBD∽△ABC,E為AB的中點(diǎn),AE=BE=AB=2cm,∴t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點(diǎn),∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為2或3.5,故選A.【考點(diǎn)】本題考查了相似三角形的判定、平行線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識(shí);熟記相似三角形的判定方法是解決問(wèn)題的關(guān)鍵,注意分類討論.6、B【解析】【分析】只需要證明△AED∽△ACB即可求解.【詳解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴∴∴BD=AD+AB=2+4=6.故選B.【考點(diǎn)】本題主要考查了平行線的性質(zhì),相似三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.二、多選題1、BC【解析】【分析】由題意,拋物線經(jīng)過(guò)(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯(cuò)誤,∴拋物線的對(duì)稱軸t=4.5,故B正確,∵t=9時(shí),h=0,∴足球被踢出9s時(shí)落地,故C正確,∵t=1.5時(shí),h=11.25,故D錯(cuò)誤.∴正確的有②③,故選:BC【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考常考題型.2、ABD【解析】【分析】結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)進(jìn)行判斷即可求解【詳解】∵拋物線開(kāi)口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項(xiàng)正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當(dāng)y=0時(shí),方程的根為-1和3,∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0),即A項(xiàng)正確;將點(diǎn)(-3,m)代入到拋物線方程,可得m=12a,∵結(jié)合k=-4a,∴方程,化簡(jiǎn)為:,∵a<0,∴,即,顯然方程無(wú)實(shí)數(shù)解,故C項(xiàng)說(shuō)法錯(cuò)誤;向左平移3個(gè)單位,依據(jù)左加右減原則,可得新拋物線為:,即D說(shuō)法正確,故選:ABD.【考點(diǎn)】本題考查了拋物線的性質(zhì)與圖象的知識(shí),解答本題時(shí)需注重運(yùn)用數(shù)形結(jié)合的思想.3、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過(guò)圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個(gè)條件,即可推論出其余三個(gè),逐一進(jìn)行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項(xiàng)說(shuō)法錯(cuò)誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應(yīng)該是:過(guò)圓心,且平分一條弧的直線垂直于這條弧所對(duì)的弦,選項(xiàng)說(shuō)法錯(cuò)誤,符合題意;C、弦的垂線不一定經(jīng)過(guò)這條弦所在的圓心,應(yīng)該是:弦的垂直平分線必經(jīng)過(guò)這條弦所在的圓心,選項(xiàng)說(shuō)法錯(cuò)誤,符合題意;D、在一個(gè)圓內(nèi),平分一條弧和它所對(duì)弦的直線必經(jīng)過(guò)這個(gè)圓的圓心,選項(xiàng)說(shuō)法正確,不符合題意;故選ABC.【考點(diǎn)】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理及其推論.4、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項(xiàng)排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=

B′C′=,∴,∴不相似.故選ABC.【考點(diǎn)】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.5、AC【解析】【分析】由a、b、c的關(guān)系可知,△ABC是直角三角形,然后根據(jù)銳角三角函數(shù)的定義求各角函數(shù)值.【詳解】解:由題意,∠A,∠B,∠C對(duì)邊分別為a,b,c,a=5,b=12,c=13,∴△ABC是直角三角形,∠C=90°.∴A、sinA=,該選項(xiàng)正確,符合題意;B、cosA=,該選項(xiàng)不正確,不符合題意;C、tanA=,該選項(xiàng)正確,符合題意;D、sinB=,該選項(xiàng)不正確,不符合題意;故選:AC.【考點(diǎn)】本題考查的是銳角三角函數(shù)的定義,銳角A的對(duì)邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切.6、ABD【解析】【分析】根據(jù)勾股定理求出AB的值,再根據(jù)銳角三角函數(shù)定義求出的三個(gè)函數(shù)值,進(jìn)行判斷即可得.【詳解】解:如圖所示,在中,AC=2,BC=3,根據(jù)勾股定理,,A、,選項(xiàng)說(shuō)法錯(cuò)誤,符合題意;B、,選項(xiàng)說(shuō)法錯(cuò)誤,符合題意;C、,選項(xiàng)說(shuō)法正確,不符合題意;D、選項(xiàng)C說(shuō)法正確,選項(xiàng)說(shuō)法錯(cuò)誤,符合題意;故選ABD.【考點(diǎn)】本題考查了銳角三角形函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理和銳角三角函數(shù)的定義.7、AC【解析】【分析】聯(lián)立求得的坐標(biāo),然后根據(jù)待定系數(shù)法即可求解反比例函數(shù)解析式,然后可得點(diǎn)B的坐標(biāo),則有根據(jù)割補(bǔ)法進(jìn)行求解三角形面積,進(jìn)而根據(jù)軸對(duì)稱的性質(zhì)可求解當(dāng)△ABC的周長(zhǎng)最小時(shí)點(diǎn)C的坐標(biāo)【詳解】解:聯(lián)立,解得,點(diǎn)坐標(biāo)為.將代入,得..反比例函數(shù)的表達(dá)式為;∴聯(lián)立,解得或..在中,令,得.故直線與軸的交點(diǎn)為.如圖,過(guò)、兩點(diǎn)分別作軸的垂線,交軸于、兩點(diǎn),則.過(guò)點(diǎn)A作y軸的對(duì)稱點(diǎn)D,連接BD,交y軸于點(diǎn)C,此時(shí)△ABC的周長(zhǎng)為最小,如圖所示:∴,設(shè)直線BD的解析式為,則有:,解得:,∴直線BD的解析式為,令x=0時(shí),則有,∴;綜上所述:正確的有AC選項(xiàng);故選AC【考點(diǎn)】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn),體現(xiàn)了方程思想,數(shù)形結(jié)合是解題的關(guān)鍵.三、填空題1、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因?yàn)椤鰿DE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長(zhǎng),再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過(guò)F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時(shí),即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.2、【解析】【分析】延長(zhǎng)AD交GB于點(diǎn)M,交BC的延長(zhǎng)線于點(diǎn)H,則AHBH,由線段垂直平分線的性質(zhì)得出GA=GB,GD=GC,由SAS證明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先證出∠AGB=∠DGC,由,證出△AGB△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出,即可得出的值.【詳解】解:延長(zhǎng)AD交GB于點(diǎn)M,交BC的延長(zhǎng)線于點(diǎn)H,如圖所示:則AHBH,GE是AB的垂直平分線,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考點(diǎn)】本題是相似三角形綜合題目,考查了線段垂直平分線的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、銳角三角函數(shù)等知識(shí),本題難度較大,綜合性強(qiáng),解題的關(guān)鍵是通過(guò)作輔助線綜合運(yùn)用全等三角形和相似三角形的性質(zhì).3、

或【解析】【分析】(1)首先利用的整數(shù)定義根據(jù)不等式確定其整數(shù)取值范圍,繼而利用取整函數(shù)定義精確求解x取值范圍.(2)本題可根據(jù)題意構(gòu)造新函數(shù),采取自變量分類討論的方式判別新函數(shù)的正負(fù),繼而根據(jù)函數(shù)性質(zhì)反求參數(shù).【詳解】(1)因?yàn)楸硎菊麛?shù),故當(dāng)時(shí),的可能取值為0,1,2.當(dāng)取0時(shí),;當(dāng)取1時(shí),;當(dāng)=2時(shí),.故綜上當(dāng)時(shí),x的取值范圍為:.(2)令,,,由題意可知:,.①當(dāng)時(shí),=,,在該區(qū)間函數(shù)單調(diào)遞增,故當(dāng)時(shí),,得.②當(dāng)時(shí),=0,不符合題意.③當(dāng)時(shí),=1,,在該區(qū)間內(nèi)函數(shù)單調(diào)遞減,故當(dāng)取值趨近于2時(shí),,得,當(dāng)時(shí),,因?yàn)椋?,符合題意.故綜上:或.【考點(diǎn)】本題考查函數(shù)的新定義取整函數(shù),需要有較強(qiáng)的題意理解能力,分類討論方法在此類型題目極為常見(jiàn),根據(jù)不同區(qū)間函數(shù)單調(diào)性求解參數(shù)為常規(guī)題型,需要利用轉(zhuǎn)化思想將非常規(guī)題型轉(zhuǎn)化為常見(jiàn)題型.4、<【解析】【分析】把點(diǎn)A(3,a),B(-1,b)代入函數(shù)上求出a、b的值,再進(jìn)行比較即可.【詳解】把點(diǎn)A(3,a)代入函數(shù)可得,a=-1;把點(diǎn)B(-1,b)代入函數(shù)可得,b=3;∵3>-1,即a<b.故答案為:<.【考點(diǎn)】本題比較簡(jiǎn)單,考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),即反比例函數(shù)圖象上點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式.5、4.5【解析】【分析】由三角形的重心的性質(zhì)即可得出答案.【詳解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中線,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案為:4.5.【考點(diǎn)】本題考查了三角形的重心,三角形三條中線的交點(diǎn)叫做三角形的重心,三角形的重心到一個(gè)頂點(diǎn)的距離等于它到對(duì)邊中點(diǎn)距離的兩倍.6、-2【解析】【分析】根據(jù)二次函數(shù)圖象對(duì)稱軸所在的直線與x軸的交點(diǎn)的坐標(biāo),即為它的圖象與x軸兩交點(diǎn)之間線段中點(diǎn)的橫坐標(biāo),即可求得.【詳解】解:函數(shù)圖像與x軸的兩個(gè)交點(diǎn)坐標(biāo)為和由對(duì)稱軸所在的直線為:解得故答案為:-2.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì)及中點(diǎn)坐標(biāo)的求法,熟練掌握和運(yùn)用二次函數(shù)的性質(zhì)及中點(diǎn)坐標(biāo)的求法是解決本題的關(guān)鍵.7、①②④【解析】【分析】由二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),即可判斷①;由拋物線的對(duì)稱軸為直線x=1,即可判斷②;拋物線與x軸的一個(gè)交點(diǎn)在-1到0之間,拋物線對(duì)稱軸為直線x=1,即可判斷④,由拋物線開(kāi)口向下,得到a<0,再由當(dāng)x=-1時(shí),,即可判斷③.【詳解】解:∵二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),∴c=3,故①正確;∵拋物線的對(duì)稱軸為直線x=1,∴,即,故②正確;∵拋物線與x軸的一個(gè)交點(diǎn)在-1到0之間,拋物線對(duì)稱軸為直線x=1,∴拋物線與x軸的另一個(gè)交點(diǎn)在2到3之間,故④正確;∵拋物線開(kāi)口向下,∴a<0,∵當(dāng)x=-1時(shí),,∴即,故③錯(cuò)誤,故答案為:①②④.【考點(diǎn)】本題主要考查了二次函數(shù)圖像的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握二次函數(shù)圖像的性質(zhì).四、解答題1、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長(zhǎng)OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設(shè)AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗(yàn):x=4是原方程的解.答:圍墻AB的高度是4m.【考點(diǎn)】此題主要考查了相似三角形的應(yīng)用,解決問(wèn)題的關(guān)鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.2、x=6,y=10【解析】【分析】設(shè),則x=3k,y=5k,z=6k,由可求得k的值,從而可求得x與y的值.【詳解】設(shè),則x=3k,y=5k,z=6k∵∴解得:k=2∴x=3×2=6,y=5×2=10即x、y的值分別為6、10【考點(diǎn)】本題考查了比例的性質(zhì),若幾個(gè)比相等,即,常常設(shè)其比值為k,則有a=kb,c=kd,e=kf,再根據(jù)題目條件解答則更簡(jiǎn)便.3、該樹(shù)傾斜前高度約為11.3米.【解析】【分析】過(guò)A作AH⊥BC于E,解直角三角形即可得到結(jié)論.【詳解】過(guò)作于,∵,∴為等腰三角形,設(shè),∵,∴,又在中,∵,∴,即,∴,即,又在中,∴,∴.答:該樹(shù)傾斜前高度約為11.3米.【考點(diǎn)】本題考查的是解直角三角形的應(yīng)用?仰角俯角問(wèn)題,掌握銳角三角函數(shù)的定義、仰角俯角的概念是解題的關(guān)鍵.4、(1)65;(2)當(dāng)單價(jià)為65時(shí),日獲利最大,最大利潤(rùn)為1950元.【解析】【分析】(1)若銷售單價(jià)為x元,則每千克降低(70-x)元,日均多銷售出2(70-x)千克,日均銷售量為[60+2(70-x)]千克,每千克獲利(x-30)元,根據(jù)題意可得等量關(guān)系:每千克利潤(rùn)×銷售量-500元=總利潤(rùn),根據(jù)等量關(guān)系列出方程即可;(2)運(yùn)用配方法配成頂點(diǎn)式,得頂點(diǎn)坐標(biāo),結(jié)合x(chóng)的取值范圍即可求得結(jié)論.【詳解】解:(1)設(shè)銷售單價(jià)為x元,由題意得:(x-30)[60+2(70-x)]-500=1950,解得:x1=x2=65,∵銷售單價(jià)不得高于每千克70元,也不得低于每千克30元,∴x=65符合題意,答:銷售單價(jià)為65元時(shí),日均獲利為1950元;(2)設(shè)銷售單價(jià)為x元,可獲得利潤(rùn)為y,由題意得:y=(x-30)[60+2(70-x)]-500=-2x2+260x-6500(30≤x≤70),∴y=-2x2+260x-6500可化為y=-2(x-65)2+1950的形式,∴頂點(diǎn)坐標(biāo)為(65,1950),∵30<65<70,當(dāng)單價(jià)定為65元時(shí),日均獲利最大,最大利潤(rùn)為1950元.【考點(diǎn)】此題主要考查了一元二次方程的應(yīng)用,二次函數(shù)的應(yīng)用,關(guān)鍵是根據(jù)題意表示出日均銷售量,以及每千克的利潤(rùn).5、(1)(2)|PC?PD|最大時(shí)a的值為6(3)存在,點(diǎn)M的坐標(biāo)為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點(diǎn)C坐標(biāo),最后用待定系數(shù)法即可得出結(jié)論;(2)先求出OC解析式,由平行四邊形的性質(zhì)可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點(diǎn)D的坐標(biāo),再根據(jù)三角形關(guān)系可得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論