




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
202X通遼市中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編一、中考數(shù)學(xué)幾何綜合壓軸題1.問題情境:如圖1,在正方形ABCD中,E為邊BC上一點(不與點B、C重合),垂直于AE的一條直線MN分別交AB、AE、CD于點M、P、N.判斷線段DN、MB、EC之間的數(shù)量關(guān)系,并說明理由.問題探究:在“問題情境”的基礎(chǔ)上,(1)如圖2,若垂足P恰好為AE的中點,連接BD,交MN于點Q,連接EQ,并延長交邊AD于點F.求∠AEF的度數(shù);(2)如圖3,當(dāng)垂足P在正方形ABCD的對角線BD上時,連接AN,將△APN沿著AN翻折,點P落在點P'處.若正方形ABCD的邊長為4,AD的中點為S,求P'S的最小值.問題拓展:如圖4,在邊長為4的正方形ABCD中,點M、N分別為邊AB、CD上的點,將正方形ABCD沿著MN翻折,使得BC的對應(yīng)邊B'C'恰好經(jīng)過點A,C'N交AD于點F.分別過點A、F作AG⊥MN,F(xiàn)H⊥MN,垂足分別為G、H.若AG=,請直接寫出FH的長.解析:問題情境:.理由見解析;問題探究:(1);(2)的最小值為;問題拓展:.【分析】問題情境:過點B作BF∥MN分別交AE、CD于點G、F,證出四邊形MBFN為平行四邊形,得出NF=MB,證明△ABE≌△BCF得出BE=CF,即可得出結(jié)論;問題探究:(1)連接AQ,過點Q作HI∥AB,分別交AD、BC于點H、I,證出△DHQ是等腰直角三角形,HD=HQ,AH=QI,證明Rt△AHQ≌Rt△QIE得出∠AQH=∠QEI,得出△AQE是等腰直角三角形,得出∠EAQ=∠AEQ=45°,即可得出結(jié)論;(2)連接AC交BD于點O,則△APN的直角頂點P在OB上運動,設(shè)點P與點B重合時,則點P′與點D重合;設(shè)點P與點O重合時,則點P′的落點為O′,由等腰直角三角形的性質(zhì)得出∠ODA=∠ADO′=45°,當(dāng)點P在線段BO上運動時,過點P作PG⊥CD于點G,過點P′作P′H⊥CD交CD延長線于點H,連接PC,證明△APB≌△CPB得出∠BAP=∠BCP,證明Rt△PGN≌Rt△NHP'得出PG=NH,GN=P'H,由正方形的性質(zhì)得出∠PDG=45°,易得出PG=GD,得出GN=DH,DH=P'H,得出∠P'DH=45°,故∠P'DA=45°,點P'在線段DO'上運動;過點S作SK⊥DO',垂足為K,即可得出結(jié)果;問題拓展:延長AG交BC于E,交DC的延長線于Q,延長FH交CD于P,則EG=AG=,PH=FH,得出AE=5,由勾股定理得出BE==3,得出CE=BC﹣BE=1,證明△ABE∽△QCE,得出QE=AE=,AQ=AE+QE=,證明△AGM∽△ABE,得出AM=,由折疊的性質(zhì)得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,求出B'M=,AC'=1,證明△AFC'∽△MAB',得出AF=,證明△DFP∽△DAQ,得出FP=,得出FH=FP=.【詳解】問題情境:因為四邊形是正方形,所以.過點作分別交于點.所以四邊形為平行四邊形.所以.所以,所以,又因為,所以.,所以.因為,所以,所以.問題探究:(1)連接,過點作,分別交于點.易得四邊形矩形.所以且.因為是正方形的對角線,所以.所以是等腰直角三角形,.所以.因為是的垂直平分線,所以.所以.所以.所以.所以.所以是等腰直角三角形,,即.(2)如圖所示,連接交于點,由題意易得的直角頂點在上運動.設(shè)點與點重合,則點與點重合;設(shè)與點重合,則點的落點為.易知.當(dāng)點在線段上運動時,過點作的垂線,垂足為,過點作,垂足為點.易證:,所以,因為是正方形的對角線,所以,易得,所以.所以.所以,故.所以點在線段上運動.過點作,垂足為,因為點為的中點,所以,則的最小值為.問題拓展:解:延長AG交BC于E,交DC的延長線于Q,延長FH交CD于P,如圖4:則EG=AG=,PH=FH,∴AE=5,在Rt△ABE中,BE==3,∴CE=BC﹣BE=1,∵∠B=∠ECQ=90°,∠AEB=∠QEC,∴△ABE∽△QCE,∴∵AG⊥MN,∴∠AGM=90°=∠B,∵∠MAG=∠EAB,∴△AGM∽△ABE,∴,即,解得:,由折疊的性質(zhì)得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,∴B'M=,∵∠BAD=90°,∴∠B'AM=∠C'FA,∴△AFC'∽△MAB',∴,解得:∵AG⊥MN,F(xiàn)H⊥MN,∴AG∥FH,∴AQ∥FP,∴△DFP∽△DAQ,∴,即,解得:FP=,∴FH=.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解題的關(guān)鍵.2.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如圖1,當(dāng)DE∥BC時,有DBEC.(填“>”,“<”或“=”)(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.(3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).解析:(1)=;(2)成立,證明見解析;(3)135°.【分析】試題(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)由旋轉(zhuǎn)構(gòu)造出△CPB≌△CEA,再用勾股定理計算出PE,然后用勾股定理逆定理判斷出△PEA是直角三角形,再簡單計算即可.【詳解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為=,(2)成立.證明:由①易知AD=AE,∴由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如圖,將△CPB繞點C旋轉(zhuǎn)90°得△CEA,連接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【點睛】考點:幾何變換綜合題;平行線平行線分線段成比例.3.(問題情境)如圖1,點E是平行四邊形ABCD的邊AD上一點,連接BE、CE.求證:S平行四邊形ABCD.(說明:S表示面積)請以“問題情境”為基礎(chǔ),繼續(xù)下面的探究(探究應(yīng)用1)如圖2,以平行四邊形ABCD的邊AD為直徑作⊙O,⊙O與BC邊相切于點H,與BD相交于點M.若AD=6,BD=y(tǒng),AM=x,試求y與x之間的函數(shù)關(guān)系式.(探究應(yīng)用2)如圖3,在圖1的基礎(chǔ)上,點F在CD上,連接AF、BF,AF與CE相交于點G,若AF=CE,求證:BG平分∠AGC.(遷移拓展)如圖4,平行四邊形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中點,F(xiàn)在BC上,且BF:FC=2:1,過D分別作DG⊥AF于G,DH⊥CE于H,請直接寫出DG:DH的值.解析:【問題情境】見解析;【探究應(yīng)用1】;【探究應(yīng)用2】見解析;【遷移拓展】.【分析】(1)作EF⊥BC于F,則S△BCE=BC×EF,S平行四邊形ABCD=BC×EF,即可得出結(jié)論;(2)連接OH,由切線的性質(zhì)得出OH⊥BC,OH=AD=3,求出平行四邊形ABCD的面積=AD×OH=18,由圓周角定理得出AM⊥BD,得出△ABD的面積=BD×AM=平行四邊形的面積=9,即可得出結(jié)果;(3)作BM⊥AF于M,BN⊥CE于N,同圖1得:△ABF的面積=△BCE的面積=平行四邊形ABCD的面積,得出AF×BM=CE×BN,證出BM=BN,即可得出BG平分∠AGC.(4)作AP⊥BC于P,EQ⊥BC于Q,由平行四邊形的性質(zhì)得出∠ABP=60°,得出∠BAP=30°,設(shè)AB=4x,則BC=3x,由直角三角形的性質(zhì)得出BP=AB=2x,BQ=BE,AP=BP=2x,由已知得出BE=2x,BF=2x,得出BQ=x,EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理求出AF==2x,CE==x,連接DF、DE,由三角形的面積關(guān)系得出AF×DG=CE×DH,即可得出結(jié)果.【詳解】(1)證明:作EF⊥BC于F,如圖1所示:則S△BCE=BC×EF,S平行四邊形ABCD=BC×EF,∴.(2)解:連接OH,如圖2所示:∵⊙O與BC邊相切于點H,∴OH⊥BC,OH=AD=3,∴平行四邊形ABCD的面積=AD×OH=6×3=18,∵AD是⊙O的直徑,∴∠AMD=90°,∴AM⊥BD,∴△ABD的面積=BD×AM=平行四邊形的面積=9,即xy=9,∴y與x之間的函數(shù)關(guān)系式y(tǒng)=;(3)證明:作BM⊥AF于M,BN⊥CE于N,如圖3所示:同圖1得:△ABF的面積=△BCE的面積=平行四邊形ABCD的面積,∴AF×BM=CE×BN,∵AF=CE,∴BM=BN,∴BG平分∠AGC.(4)解:作AP⊥BC于P,EQ⊥BC于Q,如圖4所示:∵平行四邊形ABCD中,AB:BC=4:3,∠ABC=120°,∴∠ABP=60°,∴∠BAP=30°,設(shè)AB=4x,則BC=3x,∴BP=AB=2x,BQ=BE,AP=BP=2x,∵E是AB的中點,F(xiàn)在BC上,且BF:FC=2:1,∴BE=2x,BF=2x,∴BQ=x,∴EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理得:AF==2x,CE==x,連接DF、DE,則△CDE的面積=△ADF的面積=平行四邊形ABCD的面積,∴AF×DG=CE×DH,∴DG:DH=CE:AF=.【點睛】本題是圓的綜合題目,考查了圓周角定理、平行四邊形的性質(zhì)、三角形面積公式、含30°角的直角三角形的性質(zhì)、勾股定理、角平分線的判定等知識;本題綜合性強,需要添加輔助線,熟練掌握平行四邊形的性質(zhì)和勾股定理是解題的關(guān)鍵.4.探究:如圖1和2,四邊形中,已知,,點,分別在、上,.(1)①如圖1,若、都是直角,把繞點逆時針旋轉(zhuǎn)至,使與重合,則能證得,請寫出推理過程;②如圖2,若、都不是直角,則當(dāng)與滿足數(shù)量關(guān)系_______時,仍有;(2)拓展:如圖3,在中,,,點、均在邊上,且.若,求的長.解析:(1)①見解析;②,理由見解析;(2)【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;(2)根據(jù)等腰直角三角形性質(zhì)好勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3?x,根據(jù)勾股定理得出方程,求出x即可.【詳解】(1)①如圖1,∵把繞點逆時針旋轉(zhuǎn)至,使與重合,∴,,∵,,∴,∴,即,在和中∴,∴,∵,∴;②,理由是:把繞點旋轉(zhuǎn)到,使和重合,則,,,∵,∴,∴,,在一條直線上,和①知求法類似,,在和中∴,∴,∵,∴;故答案為:(2)∵中,,∴,由勾股定理得:,把繞點旋轉(zhuǎn)到,使和重合,連接.則,,,∵,∴,∴,在和中∴,∴,設(shè),則,∵,∴,∵,,∴,由勾股定理得:,,解得:,即.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,此題是開放性試題,首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對學(xué)生的分析問題,解決問題的能力要求比較高.5.觀察猜想:(1)如圖1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,點D與點C重合,點E在斜邊AB上,連接DE,且DE=AE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到線段DF,連接EF,則=______,sin∠ADE=________,探究證明:(2)在(1)中,如果將點D沿CA方向移動,使CD=AC,其余條件不變,如圖2,上述結(jié)論是否保持不變?若改變,請求出具體數(shù)值:若不變,請說明理由.拓展延伸(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=a,點D在邊AC的延長線上,E是AB上任意一點,連接DE.ED=nAE,將線段DE繞著點D順時針旋轉(zhuǎn)90°至點F,連接EF.求和sin∠ADE的值分別是多少?(請用含有n,a的式子表示)解析:(1);;(2)不變;(3)=;sin∠ADE=.【分析】(1)由等腰三角形的性質(zhì)和等邊三角形的判定得到∠A=∠ACE=30°,△BEC是等邊三角形,據(jù)此求得CE的長度,根據(jù)等腰直角三角形的性質(zhì)來求EF的長度,易得答案;(2)不變.理由:如圖2,過點D作DG∥BC交AB于點G,構(gòu)造直角三角形:△ADG,結(jié)合含30度角的直角三角形的性質(zhì)和銳角三角函數(shù)的定義,結(jié)合方程求得答案;(3)如圖3,過點E作EG⊥AD于點G,構(gòu)造直角三角形,根據(jù)銳角三角函數(shù)的定義列出方程并解答.【詳解】(1)如圖1,∵在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴∠B=60°.又CE=AE,∴∠ACE=∠A=30°,∴∠BCE=60°,∴△BEC是等邊三角形,∴BE=CE.∴AE=CE=BE.∴AD=AB=CE.又由旋轉(zhuǎn)的性質(zhì)知:FC=EC,∠FCE=90°,∴EF=CE,∴==.∵∠ADE=30°,∴sin∠ADE=.故答案是:;;(2)不變,理由:如圖2,過點D作DG∥BC交AB于點G,則△ADG是直角三角形.∵∠DAG=30°,DE=AE,設(shè)DG=x,∴∠AED=30°,AD=x,∠DEG=∠DGE=60°.∴DE=DF=x,sin∠ADE=.∵∠EDF=90°,∴EF=x.∴==.∵∠ADE=30°,∴sin∠ADE=.(3)過點E作EG⊥AD于點G,設(shè)AE=x,則DE=nx.∵∠CAB=a,∴AG=cosα?x,EG=sinα?x.∴DG==?x.∴AD=cosα?x+?x.∵∠EDF=90°,DE=DF,∴EF=DE=nx.∴==,sin∠ADE===.【點睛】本題考查了等腰三角形的性質(zhì)和等邊三角形的判定,作輔助線構(gòu)造直角三角形,根據(jù)銳角三角函數(shù)的定義求解.6.小明研究了這樣一道幾何題:如圖1,在中,把繞點順時針旋轉(zhuǎn)得到,把繞點逆時針旋轉(zhuǎn)得到,連接.當(dāng)時,請問邊上的中線與的數(shù)量關(guān)系是什么?以下是他的研究過程:特例驗證:(1)①如圖2,當(dāng)為等邊三角形時,猜想與的數(shù)量關(guān)系為_______;②如圖3,當(dāng),時,則長為________.猜想論證:(2)在圖1中,當(dāng)為任意三角形時,猜想與的數(shù)量關(guān)系,并給予證明.拓展應(yīng)用:(3)如圖4,在四邊形,,,,,,在四邊形內(nèi)部是否存在點,使與之間滿足小明探究的問題中的邊角關(guān)系?若存在,請畫出點的位置(保留作圖痕跡,不需要說明)并直接寫出的邊上的中線的長度;若不存在,說明理由.解析:(1)①;②4,(2);理由見解析,(3)存在;【分析】(1)①首先證明是含有的直角三角形,可得,即可解決問題;②首先證明,根據(jù)直角三角形斜邊中線定理即可解決問題.(2)與的數(shù)量關(guān)系為,如圖5,延長到,使,連接、,先證四邊形是平行四邊形,再證明,即可解決問題.(3)存在,如圖6,延長交的延長線于,作于,做直線的垂直平分線交于,交于,連接、、,作的中線,連接交于,先證明,,再證明,即可得出結(jié)論,再在中,根據(jù)勾股定理,即可求出的長.【詳解】(1)①如圖2,∵是等邊三角形,把繞點順時針旋轉(zhuǎn)得到,把繞點逆時針旋轉(zhuǎn)得到,∴,又∵是邊上的中線,∴,∴,即,∵,,∴,∴,∴在中,,,∴.故答案為:.②如圖3,∵,,∴,即和為直角三角形,∵把繞點順時針旋轉(zhuǎn)得到,把繞點逆時針旋轉(zhuǎn)得到,∴,,∴在和中,∴,∴,∵是邊上的中線,為直角三角形,∴,又∵,∴.故答案為:.(2),如圖5,延長到,使,連接、,圖5∵,,∴四邊形是平行四邊形,∴,∵,,∴,∵,∴在和中,∴,∴,∴.(3)存在,如圖6,延長交的延長線于,作于,作直線的垂直平分線交于,交于,連接、、,作的中線,連接交于,圖6∵,∴,∵,∴,在中,∵,,,∴,,,在中,∵,,,∴,∴,∵,∴,∵,∴,,在中,∵,,∴,∴,∴,∴,∵,∴四邊形是矩形,∴,∴,∴是等邊三角形,∴,∵,∴,∴,∴與之間滿足小明探究的問題中的邊角關(guān)系,在中,∵,,,∴.【點睛】本題考查了三角形的綜合問題.掌握全等三角形的性質(zhì)以及判定定理、直角三角形斜邊中線定理、解直角三角形、勾股定理、中線的性質(zhì)是解題的關(guān)鍵.在處理三角形的邊旋轉(zhuǎn)問題時,旋轉(zhuǎn)前后邊長不變,根據(jù)已知角度變化,求得線段之間關(guān)系.在證明某點是否存在問題時,先假設(shè)這點存在,能求出相關(guān)線段或坐標(biāo),即證實存在性.7.如圖1,邊長為4的正方形與邊長為的正方形的頂點重合,點在對角線上.問題發(fā)現(xiàn)(1)如圖1,與的數(shù)量關(guān)系為______.類比探究(2)如圖2,將正方形繞點旋轉(zhuǎn)度().請問(1)中的結(jié)論還成立嗎?若不成立,請說明理由.拓展延伸(3)若為的中點,在正方形的旋轉(zhuǎn)過程中,當(dāng)點,,在一條直線上時,線段的長度為______.解析:(1);(2)成立,見解析;(3)或【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即可的結(jié)論;拓展延伸:分兩種情況,連接CE交GF于H,由正方形的性質(zhì)得出AB=BC=4,,,GH=HF=HE=HC,得出,,,由勾股定理求出,即可得出答案.【詳解】[問題發(fā)現(xiàn)]解:,理由如下:∵四邊形ABCD和四邊形CFEG是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,CE=CF,CE⊥GF,∴AB∥EF,∴,;故答案為:;[類比探究]解:上述結(jié)論還成立,理由如下:連接CE,如圖2所示:∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF,在Rt△CEG和Rt△CBA中,,,∴△ACE∽△BCF,,;[拓展延伸]解:分兩種情況:①如圖3所示:連接CE交GF于H,∵四邊形ABCD和四邊形CFEG是正方形,∴AB=BC=4,AC=AB=4,GF=CE=CF,HF=HE=HC,∵點F為BC的中點,∴CF=BC=2,GF=CE=2,GH=HF=HE=HC=,∴,∴;②如圖4所示:連接CE交GF于H,同①得:GH=HF=HE=HC=,∴,∴;故答案為:或.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例定理、相似三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握正方形的性質(zhì),證明三角形相似是解題的關(guān)鍵.8.如圖1,在中,,,點,分別在邊,上,,連接,點,,分別為,,的中點.(1)觀察猜想圖1中,線段與的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把繞點逆時針方向旋轉(zhuǎn)到圖2的位置,連接,,,判斷的形狀,并說明理由;(3)拓展延伸把繞點在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出面積的最大值.解析:(1)PM=PN,;(2)等腰直角三角形,理由詳見解析;(3).【詳解】試題分析:(1)已知點,,分別為,,的中點,根據(jù)三角形的中位線定理可得,,,根據(jù)平行線的性質(zhì)可得∠DPM=∠DCE,∠NPD=∠ADC,在中,,,,可得BD=EC,∠DCE+∠ADC=90°,即可得PM=PN,∠DPM+∠NPD=90°,即;(2)是等腰直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)易證△BAD≌△CAE,即可得BD=CE,∠ABD=∠ACE,根據(jù)三角形的中位線定理及平行線的性質(zhì)(方法可類比(1)的方法)可得PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN為等腰直角三角形;(3)把繞點旋轉(zhuǎn)到如圖的位置,此時PN=(AD+AB)="7,"PM=(AE+AC)=7,且PN、PM的值最長,由(2)可知PM=PN,,所以面積的最大值為.試題解析:(1)PM=PN,;(2)等腰直角三角形,理由如下:由旋轉(zhuǎn)可得∠BAD=∠CAE,又AB=AC,AD=AE∴△BAD≌△CAE∴BD=CE,∠ABD=∠ACE,∵點,分別為,的中點∴PM是△DCE的中位線∴PM=CE,且,同理可證PN=BD,且∴PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN為等腰直角三角形.(3).考點:旋轉(zhuǎn)和三角形的綜合題.9.(問題原型)如圖,在矩形中,對角線、交于點,以為直徑作.求證:點、在上.請完成上面問題的證明,寫出完整的證明過程.(發(fā)現(xiàn)結(jié)論)矩形的四個頂點都在以該矩形對角線的交點為圓心,對角線的長為直徑的圓上.(結(jié)論應(yīng)用)如圖,已知線段,以線段為對角線構(gòu)造矩形.求矩形面積的最大值.(拓展延伸)如圖,在正方形中,,點、分別為邊、的中點,以線段為對角線構(gòu)造矩形,矩形的邊與正方形的對角線交于、兩點,當(dāng)?shù)拈L最大時,矩形的面積為_____________________解析:問題原型:見解析;結(jié)論應(yīng)用:見解析;發(fā)現(xiàn)結(jié)論:2;拓展延伸:2【分析】問題原型:運用矩形對角線互相平分且相等,即可求證四點共圓;結(jié)論應(yīng)用:根據(jù)結(jié)論矩形面積最大時為正方形,利用對角線的長求得正方形的面積;拓展延伸:由上一問的結(jié)論,可知四邊形為正方形,證明四邊形是正方形,繼而求得面積【詳解】解:【問題原型】∵為直徑,∴為半徑.令.∵四邊形為矩形,∴,,.∴.∴點、在上.【結(jié)論應(yīng)用】連續(xù)交于點,過點作于點.∴.由【發(fā)現(xiàn)結(jié)論】可知,點在以為直徑的圓上,即,∴當(dāng)即時,矩形的面積最大.∴矩形的面積最大值為.【拓展延伸】如圖,連接,設(shè)與的交點為四邊形是正方形,,點、分別為邊、的中點,四邊形是矩形由【結(jié)論應(yīng)用】可知,時,矩形的面積最大為此時四邊形為正方形,此時最大,,四邊形是正方形正方形的面積為:【點睛】本題考查了矩形的性質(zhì),正方形的性質(zhì)與判定,靈活運用矩形,正方形的性質(zhì)和判定是解題的關(guān)鍵.10.如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.解析:(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.11.德國著名的天文學(xué)家開普勒說過:“幾何學(xué)里有兩件寶,一個是勾股定理,另一個是黃金分割.如果把勾股定理比作黃金礦的話,那么可以把黃金分割比作鉆石礦”.如圖①,點C把線段分成兩部分,如果,那么稱點C為線段的黃金分割點.(1)特例感知:在圖①中,若,求的長;(2)知識探究:如圖②,作⊙O的內(nèi)接正五邊形:①作兩條相互垂直的直徑、;②作的中點P,以P為圓心,為半徑畫弧交于點Q;③以點A為圓心,為半徑,在⊙O上連續(xù)截取等弧,使弦,連接;則五邊形為正五邊形.在該正五邊形作法中,點Q是否為線段的黃金分割點?請說明理由.(3)拓展應(yīng)用:國旗和國徽上的五角星是革命和光明的象征,是一個非常優(yōu)美的幾何圖形,與黃金分割有著密切的聯(lián)系.延長題(2)中的正五邊形的每條邊,相交可得到五角星,擺正后如圖③,點E是線段的黃金分割點,請利用題中的條件,求的值.解析:(1)61.8;(2)是,理由見解析;(3)【分析】(1)根據(jù)黃金分割的定義求解即可;(2)設(shè)⊙O的半徑為a,則OA=ON=OM=a,利用勾股定理求出PA,繼而求出OQ,MQ,即可作出判斷;(3)先求出正五邊形的每個內(nèi)角,即可得到∠PEA=∠PAE=,根據(jù)已知條件可知cos72°=,再根據(jù)點E是線段PD的黃金分割點,即可求解.【詳解】解:(1)∵,∴,即,解得:AC≈61.8;(2)Q是線段OM的黃金分割點,理由如下:設(shè)⊙O的半徑為a,則OA=ON=OM=a,∴OP=,∴,∴OQ=PQ-OP=,∴MQ=OM-OQ=,,∴Q是線段OM的黃金分割點;(3)正五邊形的每個內(nèi)角為:,∴∠PEA=∠PAE=,∴cos72°=,∵點E是線段PD的黃金分割點,∴,又∵AE=ED,∴,∴cos72°=.【點睛】本題考查黃金分割、勾股定理、銳角三角函數(shù),解題的關(guān)鍵是讀懂題意正確解題.12.性質(zhì)探究如圖①,在等腰三角形中,,則底邊與腰的長度之比為________.理解運用⑴若頂角為120°的等腰三角形的周長為,則它的面積為________;⑵如圖②,在四邊形中,.①求證:;②在邊上分別取中點,連接.若,,直接寫出線段的長.類比拓展頂角為的等腰三角形的底邊與一腰的長度之比為________(用含的式子表示).解析:性質(zhì)探究:;理解運用:(1);(2)①見解析;②;類比拓展:.【分析】性質(zhì)探究:作CD⊥AB于D,則∠ADC=∠BDC=90°,由等腰三角形的性質(zhì)得出AD=BD,∠A=∠B=30°,由直角三角形的性質(zhì)得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出結(jié)果;理解運用:(1)同上得出則AC=2CD,AD=CD,由等腰三角形的周長得出4CD+2CD=8+4,解得:CD=2,得出AB=4,由三角形面積公式即可得出結(jié)果;(2)①由等腰三角形的性質(zhì)得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH即可;②連接FH,作EP⊥FH于P,由等腰三角形的性質(zhì)得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四邊形內(nèi)角和定理求出∠FEH=120°,由等腰三角形的性質(zhì)得出∠EFH=30°,由直角三角形的性質(zhì)得出PE=EF=5,PF=PE=5,得出FH=2PF=10,證明MN是△FGH的中位線,由三角形中位線定理即可得出結(jié)果;類比拓展:作AD⊥BC于D,由等腰三角形的性質(zhì)得出BD=CD,∠BAD=∠BAC=α,由三角函數(shù)得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出結(jié)果.【詳解】性質(zhì)探究解:作CD⊥AB于D,如圖①所示:則∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴=;故答案為;理解運用(1)解:如圖①所示:同上得:AC=2CD,AD=CD,∵AC+BC+AB=8+4,∴4CD+2CD=8+4,解得:CD=2,∴AB=4,∴△ABC的面積=AB×CD=×4×2=4;故答案為4(2)①證明:∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;②解:連接FH,作EP⊥FH于P,如圖②所示:則PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=5,∴PF=PE=5,∴FH=2PF=10,∵點M、N分別是FG、GH的中點,∴MN是△FGH的中位線,∴MN=FH=5;類比拓展解:如圖③所示:作AD⊥BC于D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,∵sinα=,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴=2sinα;故答案為2sinα.【點睛】本題是四邊形綜合題目,考查了等腰三角形的性質(zhì)、直角三角形的性質(zhì)、三角形中位線定理、四邊形內(nèi)角和定理、就直角三角形等知識;本題綜合性強,熟練掌握等腰三角形的性質(zhì)和含30°角的直角三角形的性質(zhì)是解題的關(guān)鍵.13.小圓同學(xué)對圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進行了拓展探究.(一)猜測探究在中,,是平面內(nèi)任意一點,將線段繞點按順時針方向旋轉(zhuǎn)與相等的角度,得到線段,連接.(1)如圖1,若是線段上的任意一點,請直接寫出與的數(shù)量關(guān)系是,與的數(shù)量關(guān)系是;(2)如圖2,點是延長線上點,若是內(nèi)部射線上任意一點,連接,(1)中結(jié)論是否仍然成立?若成立,請給予證明,若不成立,請說明理由.(二)拓展應(yīng)用如圖3,在中,,,,是上的任意點,連接,將繞點按順時針方向旋轉(zhuǎn),得到線段,連接.求線段長度的最小值.解析:(一)(1)結(jié)論:,.理由見解析;(2)如圖2中,①中結(jié)論仍然成立.理由見解析;(二)的最小值為.【分析】(一)①結(jié)論:,.根據(jù)證明≌即可.②①中結(jié)論仍然成立.證明方法類似.(二)如圖3中,在上截取,連接,作于,作于.理由全等三角形的性質(zhì)證明,推出當(dāng)?shù)闹底钚r,的值最小,求出的值即可解決問題.【詳解】(一)(1)結(jié)論:,.理由:如圖1中,∵,∴,∴,∵,,∴≌(),∴.故答案為,.(2)如圖2中,①中結(jié)論仍然成立.理由:∵,∴,∴,∵,,∴≌(),∴.(二)如圖3中,在上截取,連接,作于,作于.∵,∴,∵,,∴≌(),∴,∴當(dāng)?shù)闹底钚r,的值最小,在中,∵,,∴,∵,∴,∴,在,∵,∴,根據(jù)垂線段最短可知,當(dāng)點與重合時,的值最小,∴的最小值為.【點睛】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),解直角三角形,垂線段最短等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會利用垂線段最短解決最值問題,屬于中考壓軸題.14.如圖1,△ABC和△DCE都是等邊三角形.探究發(fā)現(xiàn)(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請說明理由.拓展運用(2)若B、C、E三點不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長.(3)若B、C、E三點在一條直線上(如圖2),且△ABC和△DCE的邊長分別為1和2,求△ACD的面積及AD的長.解析:(1)全等,理由見解析;(2)BD=;(3)△ACD的面積為,AD=.【分析】(1)依據(jù)等式的性質(zhì)可證明∠BCD=∠ACE,然后依據(jù)SAS可證明△ACE≌△BCD;(2)由(1)知:BD=AE,利用勾股定理計算AE的長,可得BD的長;(3)過點A作AF⊥CD于F,先根據(jù)平角的定義得∠ACD=60°,利用特殊角的三角函數(shù)可得AF的長,由三角形面積公式可得△ACD的面積,最后根據(jù)勾股定理可得AD的長.【詳解】解:(1)全等,理由是:∵△ABC和△DCE都是等邊三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS);(2)如圖3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE都是等邊三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴,∴BD=;(3)如圖2,過點A作AF⊥CD于F,∵B、C、E三點在一條直線上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等邊三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,sin∠ACF=,∴AF=AC×sin∠ACF=,∴S△ACD=,∴CF=AC×cos∠ACF=1×,F(xiàn)D=CD﹣CF=,在Rt△AFD中,AD2=AF2+FD2=,∴AD=.【點睛】本題考查等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形,勾股定理等,第(3)小題巧作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.15.某數(shù)學(xué)課外活動小組在學(xué)習(xí)了勾股定理之后,針對圖1中所示的“由直角三角形三邊向外側(cè)作多邊形,它們的面積,,之間的關(guān)系問題”進行了以下探究:類比探究(1)如圖2,在中,為斜邊,分別以為斜邊向外側(cè)作,,,若,則面積,,之間的關(guān)系式為;推廣驗證(2)如圖3,在中,為斜邊,分別以為邊向外側(cè)作任意,,,滿足,,則(1)中所得關(guān)系式是否仍然成立?若成立,請證明你的結(jié)論;若不成立,請說明理由;拓展應(yīng)用(3)如圖4,在五邊形中,,,,,點在上,,,求五邊形的面積.解析:(1);(2)結(jié)論成立,證明看解析;(3)【分析】(1)由題目已知△ABD、△ACE、△BCF、△ABC均為直角三角形,又因為,則有∽∽,利用相似三角形的面積比為邊長平方的比,列出等式,找到從而找到面積之間的關(guān)系;(2)在△ABD、△ACE、△BCF中,,,可以得到∽∽,利用相似三角形的面積比為邊長平方的比,列出等式,從而找到面積之間的關(guān)系;(3)將不規(guī)則四邊形借助輔助線轉(zhuǎn)換為熟悉的三角形,過點A作AHBP于點H,連接PD,BD,由此可知,,即可計算出,根據(jù)△ABP∽△EDP∽△CBD,從而有,由(2)結(jié)論有,最后即可計算出四邊形ABCD的面積.【詳解】(1)∵△ABC是直角三角形,∴,∵△ABD、△ACE、△BCF均為直角三角形,且,∴∽∽,∴,,∴∴得證.(2)成立,理由如下:∵△ABC是直角三角形,∴,∵在△ABD、△ACE、△BCF中,,,∴∽∽,∴,,∴∴得證.(3)過點A作AHBP于點H,連接PD,BD,∵,,∴,,∵,∴,∴PH=AH=,∴,,∴,∵,ED=2,∴,,∴,∵,∴△ABP∽△EDP,∴,,∴,,∴,,∵,∴∵,∴∵∴△ABP∽△EDP∽△CBD∴故最后答案為.【點睛】(1)(2)主要考查了相似三角形的性質(zhì),若兩三角形相似,則有面積的比值為邊長的平方,根據(jù)此性質(zhì)找到面積與邊長的關(guān)系即可;(3)主要考查了不規(guī)則四邊形面積的計算以及(2)的結(jié)論,其中合理正確利用前面得出的結(jié)論是解題的關(guān)鍵.16.在我們學(xué)習(xí)過的數(shù)學(xué)教科書中,有一個數(shù)學(xué)活動,若身旁沒有量角器或三角尺,又需要作等大小的角,可以采用如下方法:操作感知:第一步:對折矩形紙片,使與重合,得到折痕,把紙片展開(如圖13-1).第二步:再一次折疊紙片,使點落在上,并使折痕經(jīng)過點,得到折痕,同時得到線段(如圖13-2).猜想論證:(1)若延長交于點,如圖13-3所示,試判定的形狀,并證明你的結(jié)論.拓展探究:(2)在圖13-3中,若,當(dāng)滿足什么關(guān)系時,才能在矩形紙片中剪出符(1)中的等邊三角形?解析:(1)是等邊三角形,理由見解析;(2),理由見解析【分析】(1)連接,由折疊性質(zhì)可得是等邊三角形,,,然后可得到,即可判定是等邊三角形.(2)由折疊可知,由(1)可知,利用的三角函數(shù)即可求得.【詳解】(1)解:是等邊三角形,證明如下:連接.由折疊可知:,垂直平分.∴,∴,∴為等邊三角形,∴,∴,∵,,∴,∴,∴是等邊三角形.(2)解:方法一:要在矩形紙片上剪出等邊,則,在中,,,∴,∵,∴,即,當(dāng)或()時,在矩形紙片上能剪出這樣的等邊.方法二:要在矩形紙片上剪出等邊,則,在中,,,設(shè),則,∴,即,得,∴,∵,∴,即,當(dāng)(或)時,在矩形紙片上能剪出這樣的等邊.【點睛】本題考查了折疊的性質(zhì),及銳角三角函數(shù)的應(yīng)用,正確理解折疊性質(zhì)靈活運用三角函數(shù)解直角三角形是解本題的關(guān)鍵.17.(閱讀理解)如圖1,,的面積與的面積相等嗎?為什么?解:相等,在和中,分別作,,垂足分別為,.,.,四邊形是平行四邊形,.又,,.(類比探究)問題①,如圖2,在正方形的右側(cè)作等腰,,,連接,求的面積.解:過點作于點,連接.請將余下的求解步驟補充完整.(拓展應(yīng)用)問題②,如圖3,在正方形的右側(cè)作正方形,點,,在同一直線上,,連接,,,直接寫出的面積.解析:①;②.【分析】①過點作于點,連接,可得,根據(jù)材料可知,再由等腰三角形性質(zhì)可知,即可求出;②連接CE,證明,即可得,由此即可求解.【詳解】解:①過點作于點,連接,∵在正方形中,,∴,∴,∵,,∴,∵在正方形中,,∴;②,過程如下:如解圖3,連接CE,∵在正方形、正方形中,∴,∴,∴,∵在正方形中,,,∴.【點睛】本題主要考查了正方形性質(zhì)和平行線判定和性質(zhì)以及三角形面積,解題關(guān)鍵是理解閱讀材料,根據(jù)平行線找到等底等高的三角形.18.旋轉(zhuǎn)是一種重要的圖形變換,當(dāng)圖形中有一組鄰邊相等時往往可以通過旋轉(zhuǎn)解決問題.(1)嘗試解決:如圖①,在等腰中,,點M是上的一點,,,將繞點A旋轉(zhuǎn)后得到,連接,則___________.(2)類比探究:如圖②,在“箏形”四邊形中,于點B,于點D,點P、Q分別是上的點,且,求的周長.(結(jié)果用a表示)(3)拓展應(yīng)用:如圖③,已知四邊形,,求四邊形的面積.解析:(1);(2)2a;(3)【分析】(1)由旋轉(zhuǎn)的性質(zhì)可得△ABM≌△ACN,從而得出∠MCN=∠ACB+∠ACN=90°,再根據(jù)勾股得出AM的長;(2)將繞點C旋轉(zhuǎn)后得到,利用SAS得出△QCP≌△QCM,從而得出的周長(3)連接BD,由于AD=CD,所以可將△BCD繞點D順時針方向旋轉(zhuǎn)60°,得到△DAB′,連接BB′,延長BA,作B′E⊥BE;易證△AFB′是等腰直角三角形,△AEB是等腰直角三角形,利用勾股定理計算AE=B′E=,BB′=,求△ABB′和△BDB′的面積和即可.【詳解】(1)∵,∴∠B=∠ACB=45°,將繞點A旋轉(zhuǎn)后得到,此時AB與AC重合,由旋轉(zhuǎn)可得:△ABM≌△ACN,∴∠BAM=∠CAN,AM=AN,BM=CN=1,∠B=∠ACN=45°,∴∠MCN=∠ACB+∠ACN=90°,∠MAN=∠ABC=90°,∴∴;(2)∵,,∴將繞點C旋轉(zhuǎn)后得到,此時BC與DC重合,∴△BCP≌△DCM,∴∠DCM=∠PCB,BP=DM,PC=CM,∵,∴,∴,∵PC=CM,QC=QC,∴△QCP≌△QCM,∴PQ=QM,∴的周長=AQ+AP+PQ=AQ+AP+QM=AQ+AP+DQ+DM=AQ+AP+DQ+BP=AD+AB,∵,∴的周長=2a;(3)如圖3,連接BD,由于AD=CD,所以可將△BCD繞點D順時針方向旋轉(zhuǎn)60°,得到△DAB′,連接BB′,延長BA,作B′E⊥BE;∴△BCD≌△B′AD∴S四邊形ABCD=S四邊形BDB′A,∵∠ABC=75°,∠ADC=60°,∴∠BAB′=135°∴∠B′AE=45°,∵∴B′E=AE=,∴BE=AB+AE=2+=,∴∵等邊△DBB′,∴BB′上的高=,∴∴,∴S四邊形ABCD=S四邊形BDB′A=S△BDB′-S△ABB′=;【點睛】本題考查了圖形的旋轉(zhuǎn)變換,三角形全等,勾股定理,等積代換思想,類比思想等.構(gòu)造直角三角形,求出三角形的高是解決問題的關(guān)鍵.19.?dāng)?shù)學(xué)課外活動小組的同學(xué)在學(xué)習(xí)了完全平方公式之后,針對兩個正數(shù)之和與這兩個正數(shù)之積的算術(shù)平方根的兩倍之間的關(guān)系進行了探究,請閱讀以下探究過程并解決問題.猜想發(fā)現(xiàn):由;;;;;猜想:如果,,那么存在(當(dāng)且僅當(dāng)時等號成立).猜想證明:∵∴①當(dāng)且僅當(dāng),即時,,∴;②當(dāng),即時,,∴.綜合上述可得:若,,則成立(當(dāng)日僅當(dāng)時等號成立).猜想運用:(1)對于函數(shù),當(dāng)取何值時,函數(shù)的值最???最小值是多少?變式探究:(2)對于函數(shù),當(dāng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 肉牛飼養(yǎng)技術(shù)分析總結(jié)
- 小書包課程體系講解
- 現(xiàn)代體育教育技術(shù)
- 醫(yī)院進修培訓(xùn)匯報
- 跳繩基本知識講解
- 設(shè)備內(nèi)部部件講解
- 盆腔核磁檢查技術(shù)
- 奢侈品包包講解
- 學(xué)校流感處置指南解讀
- 云南省玉溪市元江民中2026屆化學(xué)高三第一學(xué)期期末調(diào)研模擬試題含解析
- 智人擴散路徑重構(gòu)-洞察及研究
- 三方委托付工程款協(xié)議書
- 2026年中考英語復(fù)習(xí):初中英語課標(biāo)詞匯 80天語境背誦清單
- “蘇超”現(xiàn)象:文化破圈、城市崛起與青年力量的融合交響-2026年高考語文作文熱點話題素材積累與實戰(zhàn)訓(xùn)練
- 制作教學(xué)課件的完整步驟
- 貨運企業(yè)安全管理規(guī)范
- 《綠色物流與綠色供應(yīng)鏈》PPT課件
- ISO13485-2016醫(yī)療器械質(zhì)量管理體系全套資料(手冊、程序文件、記錄表單)
- 術(shù)前訪視和術(shù)前準(zhǔn)備注意事項.pptx
- 滬科版七年級數(shù)學(xué)上冊全套ppt課件
- 特種車輛維護保養(yǎng)技術(shù)協(xié)議
評論
0/150
提交評論