七年級下學(xué)期數(shù)學(xué)監(jiān)測期末幾何壓軸題試題(二)解析_第1頁
七年級下學(xué)期數(shù)學(xué)監(jiān)測期末幾何壓軸題試題(二)解析_第2頁
七年級下學(xué)期數(shù)學(xué)監(jiān)測期末幾何壓軸題試題(二)解析_第3頁
七年級下學(xué)期數(shù)學(xué)監(jiān)測期末幾何壓軸題試題(二)解析_第4頁
七年級下學(xué)期數(shù)學(xué)監(jiān)測期末幾何壓軸題試題(二)解析_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

一、解答題1.如圖1,點是第二象限內(nèi)一點,軸于,且是軸正半軸上一點,是x軸負(fù)半軸上一點,且.(1)(),()(2)如圖2,設(shè)為線段上一動點,當(dāng)時,的角平分線與的角平分線的反向延長線交于點,求的度數(shù):(注:三角形三個內(nèi)角的和為)(3)如圖3,當(dāng)點在線段上運動時,作交于的平分線交于,當(dāng)點在運動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.2.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點與重合,平移后的得到,點的對應(yīng)點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時,請直接寫出旋轉(zhuǎn)的時間.3.已知直線,點P為直線、所確定的平面內(nèi)的一點.(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數(shù).4.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內(nèi)一點,連HM,HN.(1)如圖1,延長HN至G,∠BMH和∠GND的角平分線相交于點E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點E.①請直接寫出∠MEN與∠MHN的數(shù)量關(guān)系:;②作MP平分∠AMH,NQ∥MP交ME的延長線于點Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運用①中的結(jié)論)5.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當(dāng)點在、(不與、重合)兩點之間運動時,設(shè),.則,,之間有何數(shù)量關(guān)系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.6.如圖,直線,點是、之間(不在直線,上)的一個動點.(1)如圖1,若與都是銳角,請寫出與,之間的數(shù)量關(guān)系并說明理由;(2)把直角三角形如圖2擺放,直角頂點在兩條平行線之間,與交于點,與交于點,與交于點,點在線段上,連接,有,求的值;(3)如圖3,若點是下方一點,平分,平分,已知,求的度數(shù).7.?dāng)?shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀其中的奧秘.你知道怎樣迅速準(zhǔn)確的計算出結(jié)果嗎?請你按下面的問題試一試:①,又,,∴能確定59319的立方根是個兩位數(shù).②∵59319的個位數(shù)是9,又,∴能確定59319的立方根的個位數(shù)是9.③如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3因此59319的立方根是39.(1)現(xiàn)在換一個數(shù)195112,按這種方法求立方根,請完成下列填空.①它的立方根是_______位數(shù).②它的立方根的個位數(shù)是_______.③它的立方根的十位數(shù)是__________.④195112的立方根是________.(2)請直接填寫結(jié)果:①________.②________.8.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動______位,其算術(shù)平方根的小數(shù)點向______移動______位.(2)已知,,則_____;______.(3),,,……小數(shù)點的變化規(guī)律是_______________________.(4)已知,,則______.9.先閱讀材料,再解答問題:我國數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根,華羅庚脫口而出,給出了答案,眾人十分驚訝,忙問計算的奧妙,你知道華羅庚怎樣迅速而準(zhǔn)確地計算出結(jié)果嗎?請你按下面的步驟也試一試:(1)我們知道,,那么,請你猜想:59319的立方根是_______位數(shù)(2)在自然數(shù)1到9這九個數(shù)字中,________,________,________.猜想:59319的個位數(shù)字是9,則59319的立方根的個位數(shù)字是________.(3)如果劃去59319后面的三位“319”得到數(shù)59,而,,由此可確定59319的立方根的十位數(shù)字是________,因此59319的立方根是________.(4)現(xiàn)在換一個數(shù)103823,你能按這種方法得出它的立方根嗎?10.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.11.閱讀材料,回答問題:(1)對于任意實數(shù)x,符號表示“不超過x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),就是x,當(dāng)x不是整數(shù)時,是點x左側(cè)的第一個整數(shù)點,如,,,,則________,________.(2)2015年11月24日,杭州地鐵1號線下沙延伸段開通運營,極大的方便了下沙江濱居住區(qū)居民的出行,杭州地鐵收費采用里程分段計價,起步價為2元/人次,最高價為8元/人次,不足1元按1元計算,具體權(quán)費標(biāo)準(zhǔn)如下:里程范圍4公里以內(nèi)(含4公里)4-12公里以內(nèi)(含12公里)12-24公里以內(nèi)(含24公里)24公里以上收費標(biāo)準(zhǔn)2元4公里/元6公里/元8公里/元①若從下沙江濱站到文海南路站的里程是3.07公里,車費________元,下沙江濱站到金沙湖站里程是7.93公里,車費________元,下沙江濱站到杭州火東站里程是19.17公里,車費________元;②若某人乘地鐵花了7元,則他乘地鐵行駛的路程范圍(不考慮實際站點下車?yán)锍糖闆r)?12.[閱讀材料]∵,即,∴,∴的整數(shù)部分為1,∴的小數(shù)部分為[解決問題](1)填空:的小數(shù)部分是__________;(2)已知是的整數(shù)部分,是的小數(shù)部分,求代數(shù)式的平方根為______.13.已知、兩點的坐標(biāo)分別為,,將線段水平向右平移到,連接,,得四邊形,且.(1)點的坐標(biāo)為______,點D的坐標(biāo)為______;(2)如圖1,軸于,上有一動點,連接、,求最小時點位置及其坐標(biāo),并說明理由;(3)如圖2,為軸上一點,若平分,且于,.求與之間的數(shù)量關(guān)系.14.綜合與實踐課上,同學(xué)們以“一個直角三角形和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.(3)如圖3,若∠A=30°,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請寫出與的數(shù)量關(guān)系并說明理由.15.如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標(biāo);(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應(yīng)點分別為點P和點Q(點P與點B不重合),設(shè)點P的縱坐標(biāo)為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設(shè)PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.16.如圖,數(shù)軸上兩點A、B對應(yīng)的數(shù)分別是﹣1,1,點P是線段AB上一動點,給出如下定義:如果在數(shù)軸上存在動點Q,滿足|PQ|=2,那么我們把這樣的點Q表示的數(shù)稱為連動數(shù),特別地,當(dāng)點Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)﹣3,0,2.5是連動數(shù)的是;(2)關(guān)于x的方程2x﹣m=x+1的解滿足是連動數(shù),求m的取值范圍;(3)當(dāng)不等式組的解集中恰好有4個解是連動整數(shù)時,求a的取值范圍.17.如圖:在四邊形ABCD中,A、B、C、D四個點的坐標(biāo)分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點的坐標(biāo).(2)若四邊形內(nèi)部有一點P的坐標(biāo)為(a,b)寫點P的對應(yīng)點P′的坐標(biāo).(3)求四邊形ABCD的面積.18.如圖,在平面直角坐標(biāo)系中,點,,將線段AB進行平移,使點A剛好落在x軸的負(fù)半軸上,點B剛好落在y軸的負(fù)半軸上,A,B的對應(yīng)點分別為,,連接交y軸于點C,交x軸于點D.(1)線段可以由線段AB經(jīng)過怎樣的平移得到?并寫出,的坐標(biāo);(2)求四邊形的面積;(3)P為y軸上的一動點(不與點C重合),請?zhí)骄颗c的數(shù)量關(guān)系,給出結(jié)論并說明理由.19.某企業(yè)用規(guī)格是170cm×40cm的標(biāo)準(zhǔn)板材作為原材料,按照圖①所示的裁法一或裁法二,裁剪出甲型與乙型兩種板材(單位:cm).(1)求圖中a、b的值;(2)若將40張標(biāo)準(zhǔn)板材按裁法一裁剪,5張標(biāo)準(zhǔn)板材按裁法二裁剪,裁剪后將得到的甲型與乙型板材做側(cè)面或底面,做成如圖②所示的豎式與橫式兩種無蓋的裝飾盒若干個(接縫處的長度忽略不計).①一共可裁剪出甲型板材張,乙型板材張;②恰好一共可以做出豎式和橫式兩種無蓋裝飾盒子多少個?20.為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時,水費按a元/米3收費;每戶每月用水量超過6米3時,不超過的部分每立方米仍按a元收費,超過的部分按c元/米3收費,該市某用戶今年3、4月份的用水量和水費如下表所示:月份用水量(m3)收費(元)357.54927(1)求a、c的值,并寫出每月用水量不超過6米3和超過6米3時,水費與用水量之間的關(guān)系式;(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費.21.閱讀下列文字,請仔細體會其中的數(shù)學(xué)思想.(1)解方程組,我們利用加減消元法,很快可以求得此方程組的解為;(2)如何解方程組呢?我們可以把m+5,n+3看成一個整體,設(shè)m+5=x,n+3=y(tǒng),很快可以求出原方程組的解為;(3)由此請你解決下列問題:若關(guān)于m,n的方程組與有相同的解,求a、b的值.22.在平面直角坐標(biāo)系中,把線段先向右平移h個單位,再向下平移1個單位得到線段(點A對應(yīng)點C),其中分別是第三象限與第二象限內(nèi)的點.(1)若,求C點的坐標(biāo);(2)若,連接,過點B作的垂線l①判斷直線l與x軸的位置關(guān)系,并說明理由;②已知E是直線l上一點,連接,且的最小值為1,若點B,D及點都是關(guān)于x,y的二元一次方程的解為坐標(biāo)的點,試判斷是正數(shù)?負(fù)數(shù)還是0?并說明理由.23.如圖,平面直角坐標(biāo)系中,已知點A(a,0),B(0,b),其中a,b滿足.將點B向右平移24個單位長度得到點C.點D,E分別為線段BC,OA上一動點,點D從點C以2個單位長度/秒的速度向點B運動,同時點E從點O以3個單位長度/秒的速度向點A運動,在D,E運動的過程中,DE交四邊形BOAC的對角線OC于點F.設(shè)運動的時間為t秒(0<t<10),四邊形BOED的面積記為S四邊形BOED(以下面積的表示方式相同).(1)求點A和點C的坐標(biāo);(2)若S四邊形BOED≥S四邊形ACDE,求t的取值范圍;(3)求證:在D,E運動的過程中,S△OEF>S△DCF總成立.24.某小區(qū)準(zhǔn)備新建個停車位,以解決小區(qū)停車難的問題.已知新建個地上停車位和個地下停車位共需萬元:新建個地上停車位和個地下停車位共需萬元,(1)該小區(qū)新建個地上停車位和個地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.25.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉(zhuǎn)化為不等式組求解,如;方法二,利用不等式的性質(zhì)直接求解,雙連不等式的左、中、右同時減去1,得,然后同時除以2,得.解決下列問題:(1)請你寫一個雙連不等式并將它轉(zhuǎn)化為不等式組;(2)利用不等式的性質(zhì)解雙連不等式;(3)已知,求的整數(shù)值.26.我們把關(guān)于x的一個一元一次方程和一個一元一次不等式組合成一種特殊組合,且當(dāng)一元一次方程的解正好也是一元一次不等式的解時,我們把這種組合叫做“有緣組合”;當(dāng)一元一次方程的解不是一元一次不等式的解時,我們把這種組合叫做“無緣組合”.(1)請判斷下列組合是“有緣組合”還是“無緣組合”,并說明理由;①;②.(2)若關(guān)于x的組合是“有緣組合”,求a的取值范圍;(3)若關(guān)于x的組合是“無緣組合”;求a的取值范圍.27.對于平面直角坐標(biāo)系xOy中的任意兩點M(x1,y1),N(x2,y2),給出如下定義:將|x1﹣x2|稱為點M,N之間的“橫長”,|y1﹣y2|稱為點M,N之間的縱長”,點M與點N的“橫長”與“縱長”之和稱為“折線距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若點M(﹣1,1),點N(2,﹣2),則點M與點N的“折線距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根據(jù)以上定義,解決下列問題:已知點P(3,2).(1)若點A(a,2),且d(P,A)=5,求a的值;(2)已知點B(b,b),且d(P,B)<3,直接寫出b的取值范圍;(3)若第一象限內(nèi)的點T與點P的“橫長”與“縱長”相等,且d(P,T)>5,簡要分析點T的橫坐標(biāo)t的取值范圍.28.閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點與原點的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對應(yīng)的點之間的距離;例1.解方程,因為在數(shù)軸上到原點的距離為的點對應(yīng)的數(shù)為,所以方程的解為.例2.解不等式,在數(shù)軸上找出的解(如圖),因為在數(shù)軸上到對應(yīng)的點的距離等于的點對應(yīng)的數(shù)為或,所以方程的解為或,因此不等式的解集為或.參考閱讀材料,解答下列問題:(1)方程的解為;(2)解不等式:;(3)解不等式:.29.如圖,平面直角坐標(biāo)系中,點的坐標(biāo)是,點在軸的正半軸上,的面積等于18.(1)求點的坐標(biāo);(2)如圖,點從點出發(fā),沿軸正方向運動,點運動至點停止,同時點從點出發(fā),沿軸正方向運動,點運動至點停止,點、點的速度都為每秒1個單位,設(shè)運動時間為秒,的面積為,求用含的式子表示,并直接寫出的取值范圍;(3)在(2)的條件下,過點作,連接并延長交于,連接交于點,若,求值及點的坐標(biāo).30.我區(qū)防汛指揮部在一河道的危險地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時針旋轉(zhuǎn)至便立即逆時針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時針旋轉(zhuǎn)至便立即逆時針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動的速度是度/秒,燈轉(zhuǎn)動的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動24秒,燈的光射線才開始轉(zhuǎn)動,在燈的光射線到達之前,燈轉(zhuǎn)動幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時開始轉(zhuǎn)動照射,在燈的光射線到達之前,若兩燈射出的光射線交于點,過點作交于點,則在轉(zhuǎn)動的過程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出這兩角間的數(shù)量關(guān)系;若改變,請求出各角的取值范圍.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負(fù)數(shù)的和為零,各項分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標(biāo)是(-2,0)、B的坐標(biāo)是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點的坐標(biāo)計算出相應(yīng)的線段的長和判斷線段與坐標(biāo)軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).2.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時,②當(dāng)BC∥EF時,③當(dāng)BC∥DF時,分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設(shè)旋轉(zhuǎn)時間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉(zhuǎn)的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.3.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4.(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等即可得證.(2)①過點H作GI∥AB,利用(1)中結(jié)論2∠MEN﹣∠MHN=180°,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進而用等量代換得出2∠MEN+∠MHN=360°.②過點H作HT∥MP,由①的結(jié)論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質(zhì)及鄰補角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過點E作EP∥AB交MH于點Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內(nèi)錯角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結(jié)論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點H作HT∥MP.如答圖2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內(nèi)角互補).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),鄰補角,等量代換,角之間的數(shù)量關(guān)系運算,輔助線的作法,正確作出輔助線是解題的關(guān)鍵,本題綜合性較強.5.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論:當(dāng)點在延長線時;當(dāng)在之間時;與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當(dāng)點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補,兩直線平行內(nèi)錯角相等,從而得到角的關(guān)系.6.(1)見解析;(2);(3)75°【分析】(1)根據(jù)平行線的性質(zhì)、余角和補角的性質(zhì)即可求解.(2)根據(jù)平行線的性質(zhì)、對頂角的性質(zhì)和平角的定義解答即可.(3)根據(jù)平行線的性質(zhì)和角平分線的定義以及三角形內(nèi)角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內(nèi)錯角相等),∵l∥MN,PQ∥MN,∴l(xiāng)∥PQ,∴∠3=∠1(兩直線平行,內(nèi)錯角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設(shè)BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點睛】本題考查了平行線的性質(zhì)、余角和補角的性質(zhì),解題的關(guān)鍵是根據(jù)平行找出角度之間的關(guān)系.7.(1)①兩;②8;③5;④58;(2)①24;②56.【分析】(1)①根據(jù)例題進行推理得出答案;②根據(jù)例題進行推理得出答案;③根據(jù)例題進行推理得出答案;④根據(jù)②③得出答案;(2)①先判斷它的立方根是幾位數(shù),再判斷個位、十位上的數(shù)字,即可得到結(jié)論;②先判斷它的立方根是幾位數(shù),再判斷個位、十位上的數(shù)字,即可得到結(jié)論.【詳解】(1)①,,∴,∴能確定195112的立方根是一個兩位數(shù),故答案為:兩;②∵195112的個位數(shù)字是2,又∵,∴能確定195112的個位數(shù)字是8,故答案為:8;③如果劃去195112后面三位112得到數(shù)195,而,∴,可得,由此能確定195112的立方根的十位數(shù)是5,故答案為:5;④根據(jù)②③可得:195112的立方根是58,故答案為:58;(2)①13824的立方根是兩位數(shù),立方根的個位數(shù)是4,十位數(shù)是2,∴13824的立方根是24,故答案為:24;②175616的立方根是兩位數(shù),立方根的個位數(shù)是6,十位數(shù)是5,∴175616的立方根是56,故答案為:56.【點睛】此題考查立方根的性質(zhì),一個數(shù)的立方數(shù)的特點,正確理解題意仿照例題解題的能力,掌握一個數(shù)的立方數(shù)的特點是解題的關(guān)鍵.8.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計算即可得到結(jié)果;(3)歸納總結(jié)得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計算即可得到結(jié)果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動兩位,其算術(shù)平方根的小數(shù)點向右移動一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點的變化規(guī)律是:被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)∵,,∴,∴,∴y=-0.01.【點睛】此題考查了立方根,以及算術(shù)平方根,弄清題中的規(guī)律是解本題的關(guān)鍵.9.(1)兩;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根據(jù)夾逼法和立方根的定義進行解答;(2)先分別求得1至9中奇數(shù)的立方,然后根據(jù)末位數(shù)字是幾進行判斷即可;(3)先利用(2)中的方法判斷出個數(shù)數(shù)字,然后再利用夾逼法判斷出十位數(shù)字即可;(4)利用(3)中的方法確定出個位數(shù)字和十位數(shù)字即可.【詳解】(1)∵1000<59319<1000000,∴59319的立方根是兩位數(shù);(2)∵125,343,729,∴59319的個位數(shù)字是9,則59319的立方根的個位數(shù)字是9;(3)∵,且59319的立方根是兩位數(shù),∴59319的立方根的十位數(shù)字是3,又∵59319的立方根的個位數(shù)字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是兩位數(shù);∵125,343,729,∴103823的個位數(shù)字是3,則103823的立方根的個位數(shù)字是7;∵,且103823的立方根是兩位數(shù),∴103823的立方根的十位數(shù)字是4,又∵103823的立方根的個位數(shù)字是7,∴103823的立方根是47.【點睛】考查了立方根的概念和求法,解題關(guān)鍵是理解一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù).10.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關(guān)鍵.11.(1);;(2)①2;3;6.②這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【分析】(1)根據(jù)題意,確定實數(shù)左側(cè)第一個整數(shù)點所對應(yīng)的數(shù)即得;(2)①根據(jù)表格確定乘坐里程的對應(yīng)段,然后將乘坐里程分段計費并累加即得;②根據(jù)表格將每段的費用從左至右依次累加直至費用為7元,進而確定7元乘坐的具體里程即得.【詳解】(1)∵∴∵∴故答案為:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需費用分為兩段即:前4公里2元,后3.93公里1元∴7.93公里所需費用為:(元)∵∴公里所需費用分為三段計費即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需費用為:(元)故答案為:2;3;6.②由題意得:乘坐24公里所需費用分為三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需費用為:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地鐵最大里程為:(公里)∴這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里答:這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【點睛】本題是閱讀材料題,考查了實數(shù)的實際應(yīng)用,根據(jù)材料中的新定義舉一反三并挖掘材料中深層次含義是解題關(guān)鍵.12.(1);(2)±3.【分析】(1)由于4<7<9,可求的整數(shù)部分,進一步得出的小數(shù)部分;(2)先求出的整數(shù)部分和小數(shù)部分,再代入代數(shù)式進行計算即可.【詳解】解:(1)∵4<7<9,∴,即,∴,∴的整數(shù)部分為2,∴的小數(shù)部分為;(2)∵是的整數(shù)部分,是的小數(shù)部分,9<10<16,∴,即,∴,∴的整數(shù)部分為3,的小數(shù)部分為,即有,,∴9的平方根為±3.∴的平方根為±3.【點睛】本題考查了估算無理數(shù)的大?。豪猛耆椒綌?shù)和算術(shù)平方根對無理數(shù)的大小進行估算.13.(1),;(2),理由見解析;(3)【分析】(1)根據(jù)已知條件求出AD和BC的長度,即可得到D、C的坐標(biāo);(2)連接BD與直線CG相交,其交點Q即為所求,然后根據(jù)求出QC、QG后即可得到Q點坐標(biāo);(3)過H作HF∥AB,過C作CM∥ED,則根據(jù)已知條件、平行線的性質(zhì)和角的有關(guān)知識可以得到.【詳解】(1)解:由題意可得四邊形ABCD是平行四邊形,且AD與BC間距離為1-(-1)=2,∴平行四邊形ABCD的高為2,∴AD=BC=S四邊形ABCD÷2=12÷2=6,∴C點坐標(biāo)為(-4+6,-1)即(2,-1),D點坐標(biāo)為(-2+6,1)即(4,1);(2)解:如圖,連接交于,∵,∴此時最?。▋牲c之間,線段最短),過作于,∵,,,∴,,,設(shè),∴,,,又∵,∴,∴,∴,∴.(3)∵,,∴,,∴.∵平分,∴.又∵,設(shè),則,∴,,過作,又∵,∴,∴,∴.過作,∴,.∵于,∴,∴,∴,又∵,∴.【點睛】本題考查平行線的綜合應(yīng)用,熟練掌握平行線的判定與性質(zhì)、平移坐標(biāo)變換規(guī)律、兩點之間線段最短的性質(zhì)、角的有關(guān)知識和運算是解題關(guān)鍵.14.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進而得出結(jié)論;(3)過點C

作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點C

作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.15.(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面積公式構(gòu)建方程求出b的值即可解決問題;(2)分兩種情形分別求解:當(dāng)點P在線段OB上時,當(dāng)點P在線段OB的延長線上時;(3)過點K作KH⊥OA用H.根據(jù)S△BPK+S△AKH=S△AOB-S長方形OPKH,構(gòu)建方程求出t,即可解決問題;【詳解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴?4?OB=6,∴OB=3,∴B(0,3).(2)當(dāng)點P在線段OB上時,S=?PQ?PB=×4×(3-t)=-2t+6.當(dāng)點P在線段OB的延長線上時,S=?PQ?PB=×4×(t-3)=2t-6.綜上所述,S=.(3)過點K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S長方形OPKH,∴PK?BP+AH?KH=6-PK?OP,∴××(3-t)+(4-)?t=6-?t,解得t=1,∴S△BPQ=-2t+6=4.【點睛】本題考查三角形綜合題,一元一次方程、三角形的面積、平移變換等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.16.(1)﹣3,2.5;(2)﹣4<m<﹣2或0<m<2;(3)1≤a<2.【分析】(1)根據(jù)連動數(shù)的定義逐一判斷即得答案;(2)先求得方程的解,再根據(jù)連動數(shù)的定義得出相應(yīng)的不等式組,解不等式組即可求出結(jié)果;(3)先解不等式組中的每個不等式,再根據(jù)連動整數(shù)的概念得到關(guān)于a的不等式組,解不等式組即可求得答案.【詳解】解:(1)設(shè)點P表示的數(shù)是x,則,若點Q表示的數(shù)是﹣3,由可得,解得:x=﹣1或﹣5,所以﹣3是連動數(shù);若點Q表示的數(shù)是0,由可得,解得:x=2或﹣2,所以0不是連動數(shù);若點Q表示的數(shù)是2.5,由可得,解得:x=﹣0.5或4.5,所以2.5是連動數(shù);所以﹣3,0,2.5是連動數(shù)的是﹣3,2.5,故答案為:﹣3,2.5;(2)解關(guān)于x的方程2x﹣m=x+1得:x=m+1,∵關(guān)于x的方程2x﹣m=x+1的解滿足是連動數(shù),∴或,解得:﹣4<m<﹣2或0<m<2;故答案為:﹣4<m<﹣2或0<m<2;(3),解不等式①,得x>﹣3,解不等式②,得x≤1+a,∵不等式組的解集中恰好有4個解是連動整數(shù),∴四個連動整數(shù)解為﹣2,﹣1,1,2,∴2≤1+a<3,解得:1≤a<2,∴a的取值范圍是1≤a<2.【點睛】本題是新定義試題,以數(shù)軸為載體,主要考查了一元一次不等式組,正確理解連動數(shù)與連動整數(shù)、列出相應(yīng)的不等式組是解題的關(guān)鍵.17.(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對應(yīng)點的坐標(biāo)進而得出答案;(2)利用平移規(guī)律進而得出對應(yīng)點坐標(biāo)的變化規(guī)律:向上平移1個單位,縱坐標(biāo)加1;向左平移2個單位,橫坐標(biāo)減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內(nèi)部有一點P的坐標(biāo)為(a,b)寫點P的對應(yīng)點P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點睛】此題主要考查了平移變換以及坐標(biāo)系內(nèi)四邊形面積求法,正確得出對應(yīng)點位置是解題關(guān)鍵.18.(1)向左平移4個單位,再向下平移6個單位,,;(2)24;(3)見解析【分析】(1)利用平移變換的性質(zhì)解決問題即可.(2)利用分割法確定四邊形的面積即可.(3)分兩種情形:點在點的上方,點在點的下方,分別求解即可.【詳解】解:(1)點,,又將線段進行平移,使點剛好落在軸的負(fù)半軸上,點剛好落在軸的負(fù)半軸上,線段是由線段向左平移4個單位,再向下平移6個單位得到,,.(2).(3)連接.,,的中點坐標(biāo)為在軸上,.,軸,同法可證,,,,同法可證,,,,當(dāng)點在點的下方時,,,,,當(dāng)點在點的上方時,.【點睛】本題考查坐標(biāo)與圖形變化—平移,解題的關(guān)鍵是理解題意,學(xué)會有分割法求四邊形的面積,學(xué)會用分類討論的思想解決問題,屬于中考??碱}型.19.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由圖示列出關(guān)于a、b的二元一次方程組求解.(2)①根據(jù)已知和圖示計算出兩種裁法共產(chǎn)生甲型板材和乙型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的甲、乙兩種型號板材的張數(shù)列出關(guān)于m、n的二元一次方程,求解,即可得出結(jié)論.【詳解】解:(1)依題意,得:解得:a=60b=40答:a、b的值分別為60,40.(2)①一共可裁剪出甲型板材40×2+5=85(張)乙型板材40+5×2=50(張).故答案是:85,50;②設(shè)可做成m個豎式無蓋裝飾盒,n個橫式無蓋裝飾盒.依題意得:,解得:m=4,n=23所以m+n=27,故答案為27個【點睛】本題考查的知識點是二元一次方程組的應(yīng)用,關(guān)鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關(guān)于m、n的二元一次方程.20.(1);0≤x≤6時,y=1.5x;x>6時,y=6x-27;(2)該戶5月份水費是21元.【分析】(1)根據(jù)3、4兩個月的用水量和相應(yīng)水費列方程組求解可得a、c的值;當(dāng)0≤x≤6時,水費=用水量×此時單價;當(dāng)x>6時,水費=前6立方水費+超出部分水費,據(jù)此列式即可;(2)x=8代入x>6時y與x的函數(shù)關(guān)系式求解即可.【詳解】解:(1)根據(jù)題意,得:,解得:;當(dāng)0≤x≤6時,y=1.5x;當(dāng)x>6時,y=1.5×6+6(x-6)=6x-27;(2)當(dāng)x=8時,y=6x-27=6×8-27=21.答:若某戶5月份的用水量為8米3,該戶5月份水費是21元.【點睛】本題主要考查利用一次函數(shù)的模型解決實際問題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實際意義準(zhǔn)確的列出解析式,再把對應(yīng)值代入求解.21.(1);(2);(3)a=3,b=2.【分析】(1)利用加減消元法,可以求得;(2)利用換元法,設(shè)m+5=x,n+3=y,則方程組化為(1)中的方程組,可求得x,y的值進一步可求出原方程組的解;(3)把am和bn當(dāng)成一個整體利用已知條件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,繼而可求出a、b的值.【詳解】解:(1)兩個方程相加得,∴,把代入得,∴方程組的解為:;故答案是:;(2)設(shè)m+5=x,n+3=y(tǒng),則原方程組可化為,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程組與有相同的解可得方程組,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【點睛】本題主要考查二元一次方程組的解法,重點是考查整體思想及換元法的應(yīng)用,解題的關(guān)鍵是理解好整體思想.22.(1)(-1,-2);(2)①結(jié)論:直線l⊥x軸.證明見解析;②結(jié)論:(s-m)+(t-n)=0.證明見解析【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.(2)①求出A,D的縱坐標(biāo),證明AD∥x軸,可得結(jié)論.②判斷出D(m+1,n-1),利用待定系數(shù)法,構(gòu)建方程組解決問題即可.【詳解】解:(1),又,,,,,點先向右平移2個單位,再向下平移1個單位得到點,.(2)①結(jié)論:直線軸.理由:,,,向右平移個單位,再向下平移1個單位得到點,,,的縱坐標(biāo)相同,軸,直線,直線軸.②結(jié)論:.理由:是直線上一點,連接,且的最小值為1,,點,及點都是關(guān)于,的二元一次方程的解為坐標(biāo)的點,,①②得到,,③②得到,,,,.【點睛】本題考查坐標(biāo)與圖形變化-平移,非負(fù)數(shù)的性質(zhì),待定系數(shù)法等知識,解題的關(guān)鍵是熟練掌握平移變換的性質(zhì),學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.23.(1)A(30,0),C(24,7);(2)≤t<10;(3)見解析【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a=30,b=7,得出A,B的坐標(biāo),由平移的性質(zhì)可得出答案;(2)由題意得出CD=2t,則BD=24﹣2t,OE=3t,根據(jù)梯形的面積公式得出S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),則可得出關(guān)于t的不等式,解不等式可得出答案;(3)由題意可得出S△OEF﹣S△DCF=3.5t,根據(jù)t>0則可得出結(jié)論.【詳解】(1)解:∵∴=0,|2a﹣3b﹣39|=0.∴a﹣b﹣23=0,2a﹣3b﹣39=0,解得,a=30,b=7.∴A(30,0),B(0,7),∵點B向右平移24個單位長度得到點C,∴C(24,7).(2)解:由題意得,CD=2t,則BD=24﹣2t,OE=3t,∴S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),∵S四邊形BOED≥S四邊形ACDE,∴×(24﹣2t+3t)×7≥××7×(2t+30﹣3t),解得t≥,∵0<t<10,∴≤t<10.(3)證明:∵S△OEF﹣S△DCF=S四邊形BOED﹣S△OBC=×(24﹣2t+3t)×7﹣×24×7,∴S△OEF﹣S△DCF=3.5t,∵0<t<10,∴3.5t>0,∴S△OEF﹣S△DCF>0,∴S△OEF>S△DCF.【點睛】本題是四邊形綜合題,考查了非負(fù)數(shù)的性質(zhì),平移的性質(zhì),坐標(biāo)與圖形的性質(zhì),梯形的面積,解一元一次不等式,解二元一次方程組,解題的關(guān)鍵學(xué)會利用參數(shù)解決問題,屬于中考常考題型.24.(1)新建一個地上停車位需0.1萬元,新建一個地下停車位需0.5萬元;(2)一共2種建造方案;(3)當(dāng)?shù)厣辖?9個車位地下建21個車位投資最少,金額為14.4萬元.【分析】(1)設(shè)新建一個地上停車位需x萬元,新建一個地下停車位需y萬元,根據(jù)等量關(guān)系可列出方程組,解出即可得出答案.(2)設(shè)新建地上停車位m個,則地下停車位(60-m)個,根據(jù)投資金額超過14萬元而不超過15萬元,可得出不等式組,解出即可得出答案.(3)將m=38和m=39分別求得投資金額,然后比較大小即可得到答案.【詳解】解:(1)設(shè)新建一個地上停車位需萬元,新建一個地下停車位需萬元,由題意得:,解得,故新建一個地上停車位需萬元,新建一個地下停車位需萬元.(2)設(shè)新建個地上停車位,由題意得:,解得,因為為整數(shù),所以或,對應(yīng)的或,故一共種建造方案.(3)當(dāng)時,投資(萬元),當(dāng)時,投資(萬元),故當(dāng)?shù)厣辖▊€車位地下建個車位投資最少,金額為萬元.【點睛】本題考查了一元一次不等式組及二元一次方程組的應(yīng)用,解答本題的關(guān)鍵是仔細審題,將實際問題轉(zhuǎn)化為數(shù)學(xué)方程或不等式的思想進行求解,有一定難度.25.(1)見解析;(2);(3)或【分析】(1),轉(zhuǎn)化為不等式組;(2)根據(jù)方法二的步驟解答即可;(3)根據(jù)方法二的步驟解答,得出,即可得到結(jié)論.【詳解】解:(1),轉(zhuǎn)化為不等式組;(2),不等式的左、中、右同時減去3,得,同時除以,得;(3),不等式的左、中、右同時乘以3,得,同時加5,得,的整數(shù)值或.【點睛】本題考查了解一元一次不等式組,參照方法二解不等式組是解題的關(guān)鍵,應(yīng)用的是不等式的性質(zhì).26.(1)①組合是“無緣組合”,②組合是“有緣組合”;(2)a<-3;(3)a<【分析】(1)先求方程的解,再解不等式,根據(jù)“有緣組合”和“無緣組合“的定義,判斷即可;(2)先解方程和不等式,然后根據(jù)“有緣組合”的定義求a的取值范圍;(3)先解方程和不等式,然后根據(jù)“無緣組合”的定義求a的取值范圍.【詳解】解:(1)①∵2x-4=0,∴x=2,∵5x-2<3,∴x<1,∵2不在x<1范圍內(nèi),∴①組合是“無緣組合”;②,去分母,得:2(x-5)=12-3(3-x),去括號,得:2x-10=12-9+3x,移項,合并同類項,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論