




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),PA=4,則PB的長(zhǎng)度為()A.3 B.4 C.5 D.62、在一個(gè)不透明的盒子中裝有紅球、白球、黑球共40個(gè),這些球除顏色外無(wú)其他差別,在看不見球的條件下,隨機(jī)從盒子中摸出一個(gè)球記錄顏色后放回.經(jīng)過(guò)多次試驗(yàn),發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個(gè)數(shù)約為()A.12 B.15 C.18 D.233、如圖,AB是的直徑,弦CD交AB于點(diǎn)P,,,,則CD的長(zhǎng)為()A. B. C. D.84、如圖,在Rt△ABC中,,,點(diǎn)D、E分別是AB、AC的中點(diǎn).將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,射線BD與射線CE交于點(diǎn)P,在這個(gè)旋轉(zhuǎn)過(guò)程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④5、下列四個(gè)圖案中,是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是()A. B. C. D.6、扇形的半徑擴(kuò)大為原來(lái)的3倍,圓心角縮小為原來(lái)的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來(lái)的3倍C.面積擴(kuò)大為原來(lái)的9倍 D.面積縮小為原來(lái)的7、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°8、如圖,AB為的直徑,,,劣弧BC的長(zhǎng)是劣弧BD長(zhǎng)的2倍,則AC的長(zhǎng)為()A. B. C.3 D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,是由繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,若點(diǎn)D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.2、在一個(gè)不透明的盒子里裝有若干個(gè)紅球和20個(gè)白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過(guò)多次重復(fù)實(shí)驗(yàn)發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個(gè).3、如圖,在平行四邊形中,,,,以點(diǎn)為圓心,為半徑的圓弧交于點(diǎn),連接,則圖中黑色陰影部分的面積為________.(結(jié)果保留)4、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機(jī)抽取一張,則抽出的牌上的數(shù)小于5的概率為_____.5、如圖,與x軸交于、兩點(diǎn),,點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),PD切于點(diǎn)D,則△ABD的面積的最大值是________;線段PD的最小值是________.6、已知⊙A的半徑為5,圓心A(4,3),坐標(biāo)原點(diǎn)O與⊙A的位置關(guān)系是______.7、點(diǎn)P為邊長(zhǎng)為2的正方形ABCD內(nèi)一點(diǎn),是等邊三角形,點(diǎn)M為BC中點(diǎn),N是線段BP上一動(dòng)點(diǎn),將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.三、解答題(7小題,每小題0分,共計(jì)0分)1、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn).(1)當(dāng)C轉(zhuǎn)到AB邊上點(diǎn)C′位置時(shí),A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點(diǎn)D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點(diǎn)在一條直線上時(shí),請(qǐng)直接寫出此時(shí)旋轉(zhuǎn)角α的度數(shù).2、從一副普通的撲克牌中取出四張牌,它們的牌面數(shù)字分別為.將這四張撲克牌背面朝上,洗勻.(1)從中隨機(jī)抽取一張,則抽取的這張牌的牌面數(shù)字能被3整除的概率是________;(2)從中隨機(jī)抽取一張,不放回,再?gòu)氖S嗟娜龔埮浦须S機(jī)抽取一張.①利用畫樹狀圖或列表的方法,寫出取出的兩張牌的牌面數(shù)字所有可能的結(jié)果;②求抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的概率.3、如圖,在中,,以AC為直徑的半圓交斜邊AB于點(diǎn)D,E為BC的中點(diǎn),連結(jié)DE,CD.過(guò)點(diǎn)D作于點(diǎn)F.(1)求證:DE是的切線;(2)若,,求的半徑.4、如圖,已知為的直徑,切于點(diǎn)C,交的延長(zhǎng)線于點(diǎn)D,且.(1)求的大?。唬?)若,求的長(zhǎng).5、在正方形ABCD中,過(guò)點(diǎn)B作直線l,點(diǎn)E在直線l上,連接CE,DE,其中,過(guò)點(diǎn)C作于點(diǎn)F,交直線l于點(diǎn)H.(1)當(dāng)直線l在如圖①的位置時(shí)①請(qǐng)直接寫出與之間的數(shù)量關(guān)系______.②請(qǐng)直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時(shí),請(qǐng)寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過(guò)程中當(dāng)時(shí),請(qǐng)直接寫出EH的長(zhǎng).6、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過(guò)點(diǎn)C作的垂線交的延長(zhǎng)線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說(shuō)明理由;(2)若,求弧的長(zhǎng).7、如圖,AB是⊙O的直徑,點(diǎn)D,E在⊙O上,四邊形BDEO是平行四邊形,過(guò)點(diǎn)D作交AE的延長(zhǎng)線于點(diǎn)C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.-參考答案-一、單選題1、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點(diǎn),∴,,∴在和中,,∴,∴.故選:B【點(diǎn)睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.2、A【分析】由題意可設(shè)盒子中紅球的個(gè)數(shù)x,則盒子中球的總個(gè)數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關(guān)系可得出摸到紅球的概率為30%,再根據(jù)概率的計(jì)算公式計(jì)算即可.【詳解】解:設(shè)盒子中紅球的個(gè)數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個(gè)數(shù)是12,故選:A.【點(diǎn)睛】本題主要考查了利用頻率估計(jì)概率以及概率求法的運(yùn)用,利用概率的求法估計(jì)總體個(gè)數(shù),利用如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關(guān)系生:一般地,在大量的重復(fù)試驗(yàn)中,隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率會(huì)穩(wěn)定于某個(gè)常數(shù)p,我們稱事件A發(fā)生的概率為p.3、A【分析】過(guò)點(diǎn)作于點(diǎn),連接,根據(jù)已知條件即可求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得,根據(jù)勾股定理即可求得,根據(jù)垂徑定理即可求得的長(zhǎng).【詳解】解:如圖,過(guò)點(diǎn)作于點(diǎn),連接,AB是的直徑,,,,在中,故選A【點(diǎn)睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),垂徑定理,掌握以上定理是解題的關(guān)鍵.4、B【分析】根據(jù),,點(diǎn)D、E分別是AB、AC的中點(diǎn).得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,L可判斷④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確即可.【詳解】解:∵,,點(diǎn)D、E分別是AB、AC的中點(diǎn).∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確;正確的是①②④.故選B.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點(diǎn)定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長(zhǎng)公式,本題難度大,利用輔助線最長(zhǎng)準(zhǔn)確圖形是解題關(guān)鍵.5、D【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、不是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.6、A【分析】設(shè)原來(lái)扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來(lái)扇形的半徑為r,圓心角為n,∴原來(lái)扇形的面積為,∵扇形的半徑擴(kuò)大為原來(lái)的3倍,圓心角縮小為原來(lái)的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.7、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形中對(duì)角互補(bǔ).解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.8、D【分析】連接,根據(jù)求得半徑,進(jìn)而根據(jù)的長(zhǎng),勾股定理的逆定理證明,根據(jù)弧長(zhǎng)關(guān)系可得,即可證明是等邊三角形,求得,進(jìn)而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點(diǎn)睛】本題考查了弧與圓心角的關(guān)系,直徑所對(duì)的圓周角是90度,勾股定理,等邊三角形的判定,求得的長(zhǎng)是解題的關(guān)鍵.二、填空題1、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.2、30【分析】設(shè)袋中紅球有x個(gè),根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個(gè),根據(jù)題意,得:,解并檢驗(yàn)得:x=30.所以袋中紅球有30個(gè).故答案為:30.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,解決本題的關(guān)鍵是用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值3、【分析】過(guò)點(diǎn)C作于點(diǎn)H,根據(jù)正弦定義解得CH的長(zhǎng),再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過(guò)點(diǎn)C作于點(diǎn)H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)、扇形面積等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.4、【分析】抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點(diǎn)數(shù)小于5的概率.【詳解】解:∵抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點(diǎn)數(shù)小于5的概率是:.故答案為:.【點(diǎn)睛】此題主要考查了概率的求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、【分析】根據(jù)題中點(diǎn)的坐標(biāo)可得圓的直徑,半徑為1,分析以AB定長(zhǎng)為底,點(diǎn)D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點(diǎn),根據(jù)切線的性質(zhì)及勾股定理可得,由其非負(fù)性即可得.【詳解】解:如圖所示:當(dāng)點(diǎn)P到如圖位置時(shí),的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長(zhǎng)為底,點(diǎn)D在圓上,高最大為圓的半徑,如圖所示:此時(shí)面積的最大值為:;如圖所示:連接AP,∵PD切于點(diǎn)D,∴,∴,設(shè)點(diǎn),在中,,,∴,在中,,∴,則,當(dāng)時(shí),PD取得最小值,最小值為,故答案為:①;②.【點(diǎn)睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.6、在⊙A上【分析】先根據(jù)兩點(diǎn)間的距離公式計(jì)算出OA,然后根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法判斷點(diǎn)O與⊙A的位置關(guān)系.【詳解】解:∵點(diǎn)A的坐標(biāo)為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點(diǎn)O在⊙A上.故答案為:在⊙A上.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,當(dāng)點(diǎn)P在圓外?d>r;當(dāng)點(diǎn)P在圓上?d=r;當(dāng)點(diǎn)P在圓內(nèi)?d<r.7、【分析】如圖,取的中點(diǎn),連接,,,證明,進(jìn)而證明在上運(yùn)動(dòng),且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長(zhǎng)即可求得的最小值.【詳解】解:如圖,取的中點(diǎn),連接,,,將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點(diǎn),是的中點(diǎn)是等邊三角形,即在和中,又是的中點(diǎn)點(diǎn)在上是的中點(diǎn),是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點(diǎn)睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識(shí)轉(zhuǎn)化線段是解題的關(guān)鍵.三、解答題1、(1),證明見解析(2)成立,證明見解析(3)【分析】(1)設(shè),先根據(jù)直角三角形的性質(zhì)可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)等邊三角形的判定與性質(zhì)可得,,都是等邊三角形,從而可得,由此即可得出結(jié)論;(2)在上截取,連接,先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,,然后根據(jù)三角形的外角性質(zhì)可得,最后根據(jù)等腰三角形的判定可得,由此即可得出結(jié)論;(3)如圖(見解析),先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)直角三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)可得,最后根據(jù)旋轉(zhuǎn)角即可得.(1)解:,證明如下:設(shè),在中,,,由旋轉(zhuǎn)的性質(zhì)得:,,和都是等邊三角形,,,是等邊三角形,,;(2)解:成立,證明如下:如圖,在上截取,連接,由旋轉(zhuǎn)的性質(zhì)得:,,,在和中,,,,,,;(3)解:如圖,當(dāng)點(diǎn)三點(diǎn)在一條直線上時(shí),由旋轉(zhuǎn)的性質(zhì)得:,,在和中,,,,則旋轉(zhuǎn)角.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2),通過(guò)作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.2、(1)(2)①見解析;②【分析】(1)直接由概率公式求解即可;(2)①列表,共有12種等可能的結(jié)果,②抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的結(jié)果有4種,再由概率公式求解即可.(1)∵共有四張牌,它們的牌面數(shù)字分別為3,4,6,9,其中抽取的這張牌的牌面數(shù)字能被3整除的有3種,∴從中隨機(jī)抽取一張,則抽取的這張牌的牌面數(shù)字能被3整除的概率是故答案為:(2)①根據(jù)題意,列表如下:第一次第二次34693—(4,3)(6,3)(9,3)4(3,4)—(6,4)(9,4)6(3,6)(4,6)—(9,6)9(3,9)(4,9)(6,9)—所有可能產(chǎn)生的全部結(jié)果共有種.②∵抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的結(jié)果有4種∴抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的概率.【點(diǎn)睛】此題考查的是畫樹狀圖或列表法求概率.樹狀圖或列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回試驗(yàn)還是不放回試驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、(1)見解析(2)【分析】(1)連接,先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)圓周角定理可得,然后根據(jù)直角三角形的性質(zhì)可得,根據(jù)等腰三角形的性質(zhì)可得,從而可得,最后根據(jù)圓的切線的判定即可得證;(2)連接,先利用勾股定理可得,設(shè)的半徑為,從而可得,再在中,利用勾股定理即可得.(1)證明:如圖,連接,,,是的直徑,,,點(diǎn)是的中點(diǎn),,,,即,又是的半徑,是的切線;(2)解:如圖,連接,,,設(shè)的半徑為,則,在中,,即,解得,故的半徑為.【點(diǎn)睛】本題考查了圓周角定理、等腰三角形的性質(zhì)、圓的切線的判定、勾股定理等知識(shí)點(diǎn),熟練掌握?qǐng)A周角定理和圓的切線的判定是解題關(guān)鍵.4、(1)45°(2)【分析】(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥CD,根據(jù)圓周角定理得到∠DOC=2∠CAD,進(jìn)而證明∠D=∠DOC,根據(jù)等腰直角三角形的性質(zhì)求出∠D的度數(shù);(2)根據(jù)等腰三角形的性質(zhì)求出OC,根據(jù)弧長(zhǎng)公式計(jì)算即可.(1)連接.∵,∴,即.∵,∴.∵是⊙的切線,∴,即.∴.∴.∴.(2)∵,,∴.∵,∴.∴的長(zhǎng).【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理、弧長(zhǎng)的計(jì)算,掌握?qǐng)A的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.5、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過(guò)點(diǎn)C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過(guò)點(diǎn)C作交BE于點(diǎn)M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過(guò)點(diǎn)C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過(guò)點(diǎn)C作交BE于點(diǎn)M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-15°=45°,∵CF⊥DE,∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,∴EF=HF=1,∴HE=,當(dāng)∠ABE=90°+15°=105°,∵BC=CE,∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB=150°,∴∠DCE=360°-∠DCB-∠BCE=120°,∵CE=BC=CD,CH⊥DE,∴∠FCE=,∴∠FEC=180°-∠CFE-∠FCE=30°,∴CF=,∴EF=,∵∠HEF=∠CEB+∠CEF=15°+30°=45°,∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,∴FH=FE,∴EH=,∴或.【點(diǎn)睛】本題考查正方形性質(zhì),圖形旋轉(zhuǎn)性質(zhì),勾股定理,等邊三角形,等腰直角三角形性質(zhì),角平分線,線段和差,掌握正方形性質(zhì),圖形旋轉(zhuǎn)性質(zhì),勾股定理,等邊三角形,等腰直角三角形性質(zhì),角平分線,線段和差是解題關(guān)鍵.6、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點(diǎn)M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進(jìn)而得到OM=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 動(dòng)物用藥品進(jìn)出口質(zhì)量要求考核試卷
- 儀表中級(jí)理論試題庫(kù)及答案
- 風(fēng)險(xiǎn)管理策略與危機(jī)公關(guān)處理考核試卷
- 市場(chǎng)占有率提升的家用紡織品品牌傳播策略優(yōu)化考核試卷
- 進(jìn)排氣系統(tǒng)與發(fā)動(dòng)機(jī)燃油蒸發(fā)損失的關(guān)系研究考核試卷
- 應(yīng)急疏散預(yù)案演練演練后心理疏導(dǎo)與關(guān)懷措施考核試卷
- 護(hù)理質(zhì)量持續(xù)改進(jìn)在醫(yī)院管理中的應(yīng)用考核試卷
- 江西省贛州市2024-2025學(xué)年高一下學(xué)期6月期末考試生物試卷(有答案)
- 海南省樂(lè)東縣2024-2025學(xué)年八年級(jí)下學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 產(chǎn)品改良依據(jù)客戶反饋確立
- 后勤保障樓幕墻施工方案新
- 第章呼吸生理學(xué)
- GB/T 19326-2022鍛制支管座
- GB 12982-2004國(guó)旗
- 惡性心律失常的識(shí)別與處理課件
- 鋼鐵企業(yè)遠(yuǎn)程智能監(jiān)控技術(shù)方案V1.0
- 五年級(jí)奧數(shù)分類數(shù)圖形
- 氣象科普知識(shí)競(jìng)賽試題及參考答案
- 2022年吉林省農(nóng)村金融綜合服務(wù)股份有限公司招聘筆試題庫(kù)及答案解析
- 換填承載力計(jì)算(自動(dòng)版)
- 七升八暑假數(shù)學(xué)銜接學(xué)習(xí)講義
評(píng)論
0/150
提交評(píng)論