基礎(chǔ)強化四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題訓(xùn)練試題(含詳解)_第1頁
基礎(chǔ)強化四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題訓(xùn)練試題(含詳解)_第2頁
基礎(chǔ)強化四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題訓(xùn)練試題(含詳解)_第3頁
基礎(chǔ)強化四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題訓(xùn)練試題(含詳解)_第4頁
基礎(chǔ)強化四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題訓(xùn)練試題(含詳解)_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、小東要從下面四組木棒中選擇一組制作一個三角形作品,你認(rèn)為他應(yīng)該選()組.A.,, B.,, C.,, D.,,2、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點作位置不同的格點的三角形與△ABC全等,這樣格點三角形最多可以畫出()A.2個 B.3個 C.4個 D.5個3、如圖,平分,,連接,并延長,分別交,于點,,則圖中共有全等三角形的組數(shù)為()A. B. C. D.4、一個三角形的兩邊長分別是3和5,則它的第三邊可能為()A.2 B.4 C.8 D.115、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°6、如圖,點A在DE上,點F在AB上,△ABC≌△EDC,若∠ACE=50°,則∠DAB=()A.40° B.45° C.50° D.55°7、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,138、如圖,點,,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.79、在下列長度的四根木棒中,能與3cm,9cm的兩根木棒首尾順次相接釘成一個三角形的是()A.3cm B.6cm C.10cm D.12cm10、下列敘述正確的是()A.三角形的外角大于它的內(nèi)角 B.三角形的外角都比銳角大C.三角形的內(nèi)角沒有小于60°的 D.三角形中可以有三個內(nèi)角都是銳角第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.2、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.3、如圖,在△中,已知點分別為的中點,若△的面積為,則陰影部分的面積為_________4、如圖,AD是BC邊上的中線,AB=5cm,AD=4cm,△ABD的周長是12cm,則BC的長是____cm.5、如圖,在中,平分,于點E,若的面積為,則陰影部分的面積為________.6、如圖,PA=PB,請你添加一個適當(dāng)?shù)臈l件:___________,使得△PAD≌△PBC.7、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時,則△CEF的周長為_____.8、如圖所示,銳角△ABC中,D,E分別是AB,AC邊上的點,連結(jié)BE、CD交于點F.將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,則∠BFC的大小是___.9、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數(shù)式表示).10、如圖,與的頂點A、B、D在同一直線上,,,,延長分別交、于點F、G.若,,則______.三、解答題(6小題,每小題10分,共計60分)1、一個零件形狀如圖所示,按規(guī)定應(yīng)等于75°,和應(yīng)分別是18°和22°,某質(zhì)檢員測得,就斷定這個零件不合格,請你運用三角形的有關(guān)知識說明零件不合格的理由.2、如圖,在四邊形ABCD中,AD∥BC,∠1=∠2,BD=BC.(1)求證:△ABD≌△ECB(2)若∠1=25°,∠DBC=30°,求∠DEC的度數(shù).3、如圖,在每個小正方形的邊長均相等的網(wǎng)格中,△ABC的頂點均在格點(網(wǎng)格線的交點)上.(1)線段CD將△ABC分成面積相等的兩個三角形,且點D在邊AB上,畫出線段CD.(2)△CBE≌△CBD,且點E在格點上,畫出△CBE.4、已知AMCN,點B在直線AM、CN之間,AB⊥BC于點B.(1)如圖1,請直接寫出∠A和∠C之間的數(shù)量關(guān)系:.(2)如圖2,∠A和∠C滿足怎樣的數(shù)量關(guān)系?請說明理由.(3)如圖3,AE平分∠MAB,CH平分∠NCB,AE與CH交于點G,則∠AGH的度數(shù)為.5、在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖①的位置時,易證△ADC≌△CEB(不需要證明),進而得到DE、AD、BE之間的數(shù)量關(guān)系為.(探究)(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖②的位置時,求證:DE=AD-BE.(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖③的位置時,直接寫出DE、AD、BE之間的數(shù)量關(guān)系.6、如圖,AD,BC相交于點O,AO=DO.(1)如果只添加一個條件,使得△AOB≌△DOC,那么你添加的條件是(要求:不再添加輔助線,只需填一個答案即可);(2)根據(jù)已知及(1)中添加的一個條件,證明AB=DC.-參考答案-一、單選題1、D【分析】利用三角形的三邊關(guān)系,即可求解.【詳解】解:根據(jù)三角形的三邊關(guān)系,得:A、,不能組成三角形,不符合題意;B、,不能夠組成三角形,不符合題意;C、,不能夠組成三角形,不符合題意;D、,能夠組成三角形,符合題意.故選:D【點睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊只差小于第三邊是解題的關(guān)鍵.2、C【分析】觀察圖形可知:DE與AC是對應(yīng)邊,B點的對應(yīng)點在DE上方兩個,在DE下方兩個共有4個滿足要求的點,也就有四個全等三角形.【詳解】根據(jù)題意,運用“SSS”可得與△ABC全等的三角形有4個,線段DE的上方有兩個點,下方也有兩個點,如圖.故選C.【點睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.3、C【分析】求出∠BAD=∠CAD,根據(jù)SAS推出△ADB≌△ADC,根據(jù)全等三角形的性質(zhì)得出∠B=∠C,∠ADB=∠ADC,求出∠ADE=∠ADF,根據(jù)ASA推出△AED≌△AFD,根據(jù)全等三角形的性質(zhì)得出AE=AF,根據(jù)SAS推出△ABF≌△ACE,根據(jù)AAS推出△EDB≌△FDC即可.【詳解】解:圖中全等三角形的對數(shù)有4對,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB?∠EDB=∠ADC?∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故選:C.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能綜合運用定理進行推理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)邊相等,對應(yīng)角相等.4、B【分析】根據(jù)三角形的三邊關(guān)系定理:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊,設(shè)第三邊為,可得,再解即可.【詳解】設(shè)第三邊為,由題意得:,.故選:B.【點睛】此題主要考查了三角形的三邊關(guān)系:掌握第三邊大于已知的兩邊的差,而小于兩邊的和是解題的關(guān)鍵.5、B【分析】已知,得到,根據(jù)外角性質(zhì),得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點睛】本題主要考查了三角形外角定理的應(yīng)用,準(zhǔn)確分析計算是解題的關(guān)鍵.6、C【分析】首先根據(jù)△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性質(zhì)求解即可.【詳解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故選:C.【點睛】此題考查了三角形全等的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的性質(zhì),三角形外角的性質(zhì).7、D【分析】根據(jù)三角形三邊關(guān)系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構(gòu)成三角形的條件,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.8、A【分析】由題意易得,然后可證,則有,進而問題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.9、C【分析】設(shè)第三根木棒的長度為cm,再確定三角形第三邊的范圍,再逐一分析各選項即可得到答案.【詳解】解:設(shè)第三根木棒的長度為cm,則所以A,B,D不符合題意,C符合題意,故選C【點睛】本題考查的是三角形的三邊的關(guān)系,掌握“利用三角形的三邊關(guān)系確定第三邊的范圍”是解本題的關(guān)鍵.10、D【分析】結(jié)合直角三角形,鈍角三角形,銳角三角形的內(nèi)角與外角的含義與大小逐一分析即可.【詳解】解:三角形的外角不一定大于它的內(nèi)角,銳角三角形的任何一個外角都大于內(nèi)角,故A不符合題意;三角形的外角可以是銳角,不一定比銳角大,故B不符合題意;三角形的內(nèi)角可以小于60°,一個三角形的三個角可以為:故C不符合題意;三角形中可以有三個內(nèi)角都是銳角,這是個銳角三角形,故D符合題意;故選D【點睛】本題考查的是三角形的的內(nèi)角與外角的含義與大小,掌握“直角三角形,鈍角三角形,銳角三角形的內(nèi)角與外角”是解本題的關(guān)鍵.二、填空題1、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.2、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設(shè)運動時間為,且AC=4m,,當(dāng)時則,即,解得當(dāng)時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.3、1【分析】根據(jù)三角形的中線把三角形分成兩個面積相等的三角形解答.【詳解】解:∵點E是AD的中點,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×4=2cm2,∴S△BCE=S△ABC=×4=2cm2,∵點F是CE的中點,∴S△BEF=S△BCE=×2=1cm2.故答案為:1.【點睛】本題考查了三角形的面積,主要利用了三角形的中線把三角形分成兩個面積相等的三角形,原理為等底等高的三角形的面積相等.4、6【分析】根據(jù)AD是BC邊上的中線,得出為的中點,可得,根據(jù)條件可求出.【詳解】解:AD是BC邊上的中線,為的中點,,,△ABD的周長是12cm,,,故答案是:6.【點睛】本題考查了三角形的中線,解題的關(guān)鍵利用中線的性質(zhì)得出為的中點.5、6【分析】證點E為AD的中點,可得△ACE與△ACD的面積之比,同理可得△ABE和△ABD的面積之比,即可解答出.【詳解】解:如圖,平分,于點E,∴,,∵,∴≌∴,∴S△ACE:S△ACD=1:2,同理可得,S△ABE:S△ABD=1:2,∵S△ABC=12,∴陰影部分的面積為S△ACE+S△ABE=S△ABC=×12=6.故答案為6.【點睛】本題主要考查了全等三角形的判定與性質(zhì)及三角形面積的等積變換,解題關(guān)鍵是明確三角形的中線將三角形分成面積相等的兩部分.6、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【分析】已有∠P是公共角和邊PA=PB,根據(jù)全等三角全等的條件,利用AAS需要添加∠D=∠C,根據(jù)ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根據(jù)邊角邊需要添加PD=PC或PC=PD.填入一個即可.【詳解】解:∵PA=PB,∠P是公共角,∴根據(jù)AAS可以添加∠D=∠C,,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠D=∠C,∴△PAD≌△PBC(AAS).根據(jù)ASA可以添加∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)ASA可以添加∠DBC=∠CAD,∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)SAS可添加PD=PC在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).根據(jù)SAS可添加BD=AC,∵PA=PB,BD=AC,∴PA+AC=PB+BD即PC=PD,在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).故答案為:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【點睛】本題考查三角形全等添加條件,掌握三角形全等判定方法與定理是解題關(guān)鍵.7、4【分析】根據(jù)題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問.8、96°96度【分析】根據(jù)題意由翻折的性質(zhì)和全等三角形的對應(yīng)角相等、三角形外角定理以及三角形內(nèi)角和定理進行分析解答.【詳解】解:設(shè)∠C′=α,∠B′=β,∵將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.則α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案為:96°.【點睛】本題考查全等三角形的性質(zhì),解答本題的關(guān)鍵是利用“全等三角形的對應(yīng)角相等”和“兩直線平行,內(nèi)錯角相等”進行推理.9、6【分析】連接CF,依據(jù)AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,依據(jù)S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當(dāng)BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當(dāng)BE=nCE時,S△AEC=,設(shè)S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關(guān)鍵是作輔助線,根據(jù)三角形之間的面積關(guān)系得出結(jié)論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.10、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點睛】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個內(nèi)角和是解答本題的關(guān)鍵.三、解答題1、不合格,理由見解析【分析】延長BD與AC相交于點E.利用三角形的外角性質(zhì),可得,,即可求解.【詳解】解:如圖,延長BD與AC相交于點E.∵是的一個外角,,,∴,同理可得∵李師傅量得,不是115°,∴這個零件不合格.【點睛】本題主要考查了三角形的外角性質(zhì),熟練掌握三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.2、(1)見解析;(2)55°【分析】(1)根據(jù)平行線的性質(zhì)可得∠ADB=∠EBC,即可利用ASA證明△ABD≌△ECB;(2)利用三角形外角的性質(zhì)求解即可.【詳解】解:(1)∵AD∥BC,∴∠ADB=∠EBC,在△ABD和△ECB中,,∴△ABD≌△ECB(ASA);(2)∵∠1=25°,∴∠2=∠1=25°,又∵∠DBC=30°,∴∠DEC=∠DBC+∠2=55°.【點睛】本題主要考查了全等三角形的判定,平行線的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.3、(1)見解析;(2)見解析【分析】(1)根據(jù)三角形一邊上的中線將三角形面積平分,所以找到AB的中點D,連接CD即可;(2)根據(jù)全等三角形的性質(zhì)得到BE=BD,CE=CD,進而找到E點即可解答.【詳解】解:(1)∵線段CD將△ABC分成面積相等的兩個三角形,且點D在邊AB上,∴點D為AB的中點,連接CD,如圖所示:(2)∵△CBE≌△CBD,∴BE=BD,CE=CD,∠CBD=∠CBE,∵點E在格點上,∴如圖,△CBE即為所求作的三角形.【點睛】本題考查基本作圖、三角形中線性質(zhì)、全等三角形的性質(zhì),掌握三角形中線性質(zhì)是解答的關(guān)鍵.4、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,見解析;(3)45°【分析】(1)過點B作BE∥AM,利用平行線的性質(zhì)即可求得結(jié)論;(2)過點B作BE∥AM,利用平行線的性質(zhì)即可求得結(jié)論;(3)利用(2)的結(jié)論和三角形的外角等于和它不相鄰的兩個內(nèi)角的和即可求得結(jié)論.【詳解】(1)過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案為:∠A+∠C=90°;(2)∠A和∠C滿足:∠C﹣∠A=90°.理由:過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)設(shè)CH與AB交于點F,如圖,∵AE平分∠MAB,∴∠GAF=∠MAB,∵CH平分∠NCB,∴∠BCF=∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案為:45°.【點睛】本題考查平行線的性質(zhì)以及三角形外角的性質(zhì),由題作出輔

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論