湖南省邵東縣2026屆十校聯(lián)考最后數(shù)學試題含解析_第1頁
湖南省邵東縣2026屆十校聯(lián)考最后數(shù)學試題含解析_第2頁
湖南省邵東縣2026屆十校聯(lián)考最后數(shù)學試題含解析_第3頁
湖南省邵東縣2026屆十校聯(lián)考最后數(shù)學試題含解析_第4頁
湖南省邵東縣2026屆十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省邵東縣2026屆十校聯(lián)考最后數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.62.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數(shù)法表示這個數(shù)是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1063.下列計算正確的是()A.﹣2x﹣2y3?2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy4.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t5.計算﹣1﹣(﹣4)的結果為()A.﹣3 B.3 C.﹣5 D.56.下列計算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a67.如圖,A、B為⊙O上兩點,D為弧AB的中點,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,則的值為()A.3 B. C. D.8.如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關系的大致圖象是()A. B. C. D.9.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+210.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°11.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD12.如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉60°得到△AED,則BE的長為()A.5 B.4 C.3 D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.14.若式子有意義,則x的取值范圍是_____.15.不等式組的最大整數(shù)解為_____.16.已知方程x2﹣5x+2=0的兩個解分別為x1、x2,則x1+x2﹣x1?x2的值為______.17.因式分解:_______________________.18.如圖,等邊三角形ABC內(nèi)接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)關于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)當m為何值時,方程有兩個不相等的實數(shù)根;(2)當m為何整數(shù)時,此方程的兩個根都為負整數(shù).20.(6分)在數(shù)學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?小林選擇了其中一對變量,根據(jù)學習函數(shù)的經(jīng)驗,對它們之間的關系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設B,E兩點間的距離為xcm,E,F(xiàn)兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;(4)結合畫出的函數(shù)圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為cm.21.(6分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:本次調(diào)查的學生有多少人?補全上面的條形統(tǒng)計圖;扇形統(tǒng)計圖中C對應的中心角度數(shù)是;若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?22.(8分)觀察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的規(guī)律,寫出第⑥個等式:_____;(2)模仿上面的方法,寫出下面等式的左邊:_____=502;(3)按照上面的規(guī)律,寫出第n個等式,并證明其成立.23.(8分)某學?!爸腔鄯綀@”數(shù)學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.24.(10分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.25.(10分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.26.(12分)計算:1227.(12分)關于x的一元二次方程有兩個實數(shù)根,則m的取值范圍是()A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<1

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設切點為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點:圓的切線的性質;勾股定理.2、C【解析】解:,故選C.3、D【解析】

A.根據(jù)同底數(shù)冪乘法法則判斷;B.根據(jù)積的乘方法則判斷即可;C.根據(jù)平方差公式計算并判斷;D.根據(jù)同底數(shù)冪除法法則判斷.【詳解】A.-2x-2y32x3y=-4xy4,故本選項錯誤;B.

(?2a2)3=?8a6,故本項錯誤;C.

(2a+1)(2a?1)=4a2?1,故本項錯誤;D.35x3y2÷5x2y=7xy,故本選項正確.故答案選D.【點睛】本題考查了同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式,解題的關鍵是熟練的掌握同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式.4、D【解析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.5、B【解析】

原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運算法則是解決本題的關鍵.6、D【解析】各項計算得到結果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D7、C【解析】

連接D為弧AB的中點,根據(jù)弧,弦的關系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,根據(jù)全等三角形的性質可得:即根據(jù)等腰三角形的性質可得:設則即可求出的值.【詳解】如圖:連接D為弧AB的中點,根據(jù)弧,弦的關系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,即根據(jù)等腰三角形的性質可得:設則故選C.【點睛】考查弧,弦之間的關系,全等三角形的判定與性質,等腰三角形的性質,銳角三角函數(shù)等,綜合性比較強,關鍵是構造全等三角形.8、A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四邊形DEFG為矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此題有三種情況:(1)當0<x<2時,AB交DE于H,如圖∵DE∥AC,∴,即,解得:EH=x,所以y=?x?x=x2,∵x、y之間是二次函數(shù),所以所選答案C錯誤,答案D錯誤,∵a=>0,開口向上;(2)當2≤x≤6時,如圖,此時y=×2×2=2,(3)當6<x≤8時,如圖,設△ABC的面積是s1,△FNB的面積是s2,BF=x﹣6,與(1)類同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴開口向下,所以答案A正確,答案B錯誤,故選A.點睛:本題考查函數(shù)的圖象.在運動的過程中正確區(qū)分函數(shù)圖象是解題的關鍵.9、D【解析】

抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質,坐標與圖形性質,熟練運用待定系數(shù)法是解答本題的關鍵.10、C【解析】【分析】根據(jù)相似多邊形性質:對應角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關鍵點:理解相似多邊形性質.11、B【解析】

由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,

∴AD//BC,AD=BC,

A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;

B、∵BE=DF,

四邊形BFDE是等腰梯形,

本選項不一定能判定BE//DF;

C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;

D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF.

故選B.【點睛】本題考查了平行四邊形的判定與性質,注意根據(jù)題意證得四邊形BFDE是平行四邊形是關鍵.12、B【解析】

根據(jù)旋轉的性質可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉

60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉的性質,等邊三角形的判定與性質,主要利用了旋轉前后對應邊相等以及旋轉角的定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據(jù)勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.14、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案為且.15、﹣1.【解析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,從而得出其最大整數(shù)解.【詳解】,解不等式①得:x≤1,解不等式②得x-1>1x,x-1x>1,-x>1,x<-1,∴

不等式組的解集為x<-1,∴

不等式組的最大整數(shù)解為-1.故答案為-1.【點睛】本題考查了一元一次不等式組的整數(shù)解,解題的關鍵是熟練的掌握一元一次不等式組的整數(shù)解.16、1【解析】解:根據(jù)題意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案為:1.點睛:本題主要考查了根據(jù)與系數(shù)的關系,利用一元二次方程的兩個根x1、x2具有這樣的關系:x1+x2=,x1x2=是解題的關鍵.17、【解析】

先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關鍵.18、【解析】

分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數(shù).本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數(shù),主要考查學生綜合運用定理進行推理和計算的能力.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)m≠1且m≠;(2)m=-1或m=-2.【解析】

(1)由方程有兩個不相等的實數(shù)根,可得△>1,列出關于m的不等式解之可得答案;(2)解方程,得:,,由m為整數(shù),且方程的兩個根均為負整數(shù)可得m的值.【詳解】解:(1)△=-4ac=(3m-2)+24m=(3m+2)≥1當m≠1且m≠時,方程有兩個不相等實數(shù)根.(2)解方程,得:,,m為整數(shù),且方程的兩個根均為負整數(shù),m=-1或m=-2.m=-1或m=-2時,此方程的兩個根都為負整數(shù)【點睛】本題主要考查利用一元二次方程根的情況求參數(shù).20、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】

根據(jù)題意作圖測量即可.【詳解】(1)取點、畫圖、測量,得到數(shù)據(jù)為3.5故答案為:3.5(3)由數(shù)據(jù)得(4)當△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x所以,當(1)中圖象與直線y=x相交時,交點橫坐標即為BE的長,由作圖、測量可知x約為3.1.【點睛】本題為動點問題的函數(shù)圖象探究題,解得關鍵是按照題意畫圖測量,并將條件轉化成函數(shù)圖象研究.21、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】

(1)根據(jù)喜好A口味的牛奶的學生人數(shù)和所占百分比,即可求出本次調(diào)查的學生數(shù).(2)用調(diào)查總人數(shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補全統(tǒng)計圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對應中心角度數(shù).(3)用總人數(shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調(diào)查的學生有30÷20%=150人;(2)C類別人數(shù)為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得出必要的信息是解題的關鍵.22、6×10+4=8248×52+4【解析】

(1)根據(jù)題目中的式子的變化規(guī)律可以解答本題;(2)根據(jù)題目中的式子的變化規(guī)律可以解答本題;(3)根據(jù)題目中的式子的變化規(guī)律可以寫出第n個等式,并加以證明.【詳解】解:(1)由題目中的式子可得,第⑥個等式:6×10+4=82,故答案為6×10+4=82;(2)由題意可得,48×52+4=502,故答案為48×52+4;(3)第n個等式是:n×(n+4)+4=(n+2)2,證明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【點睛】本題考查有理數(shù)的混合運算、數(shù)字的變化類,解答本題的關鍵是明確有理數(shù)的混合運算的計算方法.23、(1)75;4;(2)CD=4.【解析】

(1)根據(jù)平行線的性質可得出∠ADB=∠OAC=75°,結合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質可求出OD的值,進而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論