廣西壯族自治區(qū)崇左市2026屆中考四模數學試題含解析_第1頁
廣西壯族自治區(qū)崇左市2026屆中考四模數學試題含解析_第2頁
廣西壯族自治區(qū)崇左市2026屆中考四模數學試題含解析_第3頁
廣西壯族自治區(qū)崇左市2026屆中考四模數學試題含解析_第4頁
廣西壯族自治區(qū)崇左市2026屆中考四模數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西壯族自治區(qū)崇左市2026屆中考四模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.整數a、b在數軸上對應點的位置如圖,實數c在數軸上且滿足,如果數軸上有一實數d,始終滿足,則實數d應滿足().A. B. C. D.2.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃3.為確保信息安全,信息需加密傳輸,發(fā)送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規(guī)則為,明文a,b對應的密文為a+2b,2a-b,例如:明文1,2對應的密文是5,0,當接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,34.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.85.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<106.下列運算正確的是()A. B.C. D.7.﹣3的相反數是()A. B. C. D.8.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.59.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°10.某班將舉行“慶祝建黨95周年知識競賽”活動,班長安排小明購買獎品,如圖是小明買回獎品時與班長的對話情境:請根據如圖對話信息,計算乙種筆記本買了()A.25本 B.20本 C.15本 D.10本二、填空題(本大題共6個小題,每小題3分,共18分)11.圖,A,B是反比例函數y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.12.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個單位,再向上平移3個單位得到的拋物線的頂點坐標是_____.13.2017年12月31日晚,鄭東新區(qū)如意湖文化廣場舉行了“文化跨年夜、出彩鄭州人”的跨年慶?;顒樱髮W生小明和小剛都各自前往觀看了演出,而且他們兩人前往時選擇了以下三種交通工具中的一種:共享單車、公交、地鐵,則他們兩人選擇同一種交通工具前往觀看演出的概率為_____.14.分解因式:4a2-4a+1=______.15.若一個多邊形的每一個外角都等于40°,則這個多邊形的內角和是_____.16.如圖,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉,使得點A與CB的延長線上的點E重合連接CD,則∠BDC的度數為_____度.三、解答題(共8題,共72分)17.(8分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0)(1)求拋物線的表達式;(2)設點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標.18.(8分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.19.(8分)2013年6月,某中學結合廣西中小學閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據圖1和圖2提供的信息,解答下列問題:在這次抽樣調查中,一共調查了多少名學生?請把折線統(tǒng)計圖(圖1)補充完整;求出扇形統(tǒng)計圖(圖2)中,體育部分所對應的圓心角的度數;如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.20.(8分)觀察規(guī)律并填空.______(用含n的代數式表示,n是正整數,且n≥2)21.(8分)某市扶貧辦在精準扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產品,且必須裝滿,根據下表提供的信息,解答以下問題:產品名稱核桃花椒甘藍每輛汽車運載量(噸)1064每噸土特產利潤(萬元)0.70.80.5若裝運核桃的汽車為x輛,裝運甘藍的車輛數是裝運核桃車輛數的2倍多1,假設30輛車裝運的三種產品的總利潤為y萬元.(1)求y與x之間的函數關系式;(2)若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產品的車輛數及總利潤最大值.22.(10分)我市某外資企業(yè)生產的一批產品上市后30天內全部售完,該企業(yè)對這批產品上市后每天的銷售情況進行了跟蹤調查.其中,國內市場的日銷售量y1(萬件)與時間t(t為整數,單位:天)的部分對應值如下表所示.而國外市場的日銷售量y2(萬件)與時間t(t為整數,單位:天)的關系如圖所示.(1)請你從所學過的一次函數、二次函數和反比例函數中確定哪種函數能表示y1與t的變化規(guī)律,寫出y1與t的函數關系式及自變量t的取值范圍;(2)分別探求該產品在國外市場上市20天前(不含第20天)與20天后(含第20天)的日銷售量y2與時間t所符合的函數關系式,并寫出相應自變量t的取值范圍;(3)設國內、外市場的日銷售總量為y萬件,寫出y與時間t的函數關系式,并判斷上市第幾天國內、外市場的日銷售總量y最大,并求出此時的最大值.23.(12分)某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,在一段時間內,銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.寫出銷售量y件與銷售單價x元之間的函數關系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數關系式;若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,則商場銷售該品牌童裝獲得的最大利潤是多少?24.已知:如圖,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度數;(2)當AD=2時,求對角線BD的長和梯形ABCD的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據a≤c≤b,可得c的最小值是﹣1,根據有理數的加法,可得答案.【詳解】由a≤c≤b,得:c最小值是﹣1,當c=﹣1時,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故選D.【點睛】本題考查了實數與數軸,利用a≤c≤b得出c的最小值是﹣1是解題的關鍵.2、B【解析】

求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉化為減法運算,列算式計算即可.【詳解】3-(-4)=3+4=7℃.

故選B.3、A【解析】

根據題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.4、B【解析】

首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點睛】本題考查平行四邊形的性質、三角形的中位線定理等知識,解題的關鍵是熟練掌握三角形的中位線定理,屬于中考常考題型.5、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據知求出CG的長是解題的關鍵.6、D【解析】【分析】根據同底數冪的乘法、積的乘方、完全平方公式、多項式乘法的法則逐項進行計算即可得.【詳解】A.,故A選項錯誤,不符合題意;B.,故B選項錯誤,不符合題意;C.,故C選項錯誤,不符合題意;D.,正確,符合題意,故選D.【點睛】本題考查了整式的運算,熟練掌握同底數冪的乘法、積的乘方、完全平方公式、多項式乘法的運算法則是解題的關鍵.7、D【解析】

相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.【詳解】根據相反數的定義可得:-3的相反數是3.故選D.【點睛】本題考查相反數,題目簡單,熟記定義是關鍵.8、A【解析】

根據直線外一點和直線上點的連線中,垂線段最短的性質,可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質,解題關鍵是利用垂線段的性質.9、A【解析】

∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.10、C【解析】

設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意列出關于x、y的二元一次方程組,求出x、y的值即可.【詳解】解:設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意,得:,解得:,答:甲種筆記本買了25本,乙種筆記本買了15本.故選C.【點睛】本題考查的是二元二次方程組的應用,能根據題意得出關于x、y的二元二次方程組是解答此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數系數k的幾何意義,以及運用待定系數法求反比例函數解析式,根據△AOD的面積為1列出關系式是解題的關鍵.12、(﹣7,0)【解析】

直接利用平移規(guī)律“左加右減,上加下減”得出平移后的解析式進而得出答案.【詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個單位,再向上平移3個單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點坐標是:(-7,0).故答案為(-7,0).【點睛】此題主要考查了二次函數與幾何變換,正確掌握平移規(guī)律是解題關鍵.13、【解析】

首先根據題意畫樹狀圖,然后根據樹狀圖即可求得所有等可能的結果,最后用概率公式求解即可求得答案.【詳解】樹狀圖如圖所示,

∴一共有9種等可能的結果;

根據樹狀圖知,兩人選擇同一種交通工具前往觀看演出的有3種情況,

∴選擇同一種交通工具前往觀看演出的概率:,

故答案為.【點睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數與總情況數之比.14、【解析】

根據完全平方公式的特點:兩項平方項的符號相同,另一項是兩底數積的2倍,本題可用完全平方公式分解因式.【詳解】解:.故答案為.【點睛】本題考查用完全平方公式法進行因式分解,能用完全平方公式法進行因式分解的式子的特點需熟練掌握.15、【解析】

根據任何多邊形的外角和都是360度,先利用360°÷40°求出多邊形的邊數,再根據多邊形的內角和公式(n-2)?180°計算即可求解.【詳解】解:多邊形的邊數是:360°÷40°=9,

則內角和是:(9-2)?180°=1260°.

故答案為1260°.【點睛】本題考查正多邊形的外角與邊數的關系,求出多邊形的邊數是解題的關鍵.16、1【解析】

根據△EBD由△ABC旋轉而成,得到△ABC≌△EBD,則BC=BD,∠EBD=∠ABC=30°,則有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化簡計算即可得出.【詳解】解:∵△EBD由△ABC旋轉而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案為:1.【點睛】此題考查旋轉的性質,即圖形旋轉后與原圖形全等.三、解答題(共8題,共72分)17、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】

(1)由于已知拋物線與x軸的交點坐標,則可利用交點式求出拋物線解析式;(2)根據二次函數圖象上點的坐標特征,可設P(t,-t2+4t-3),根據三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對值得到兩個一元二次方程,再解方程求出t即可得到P點坐標.【詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設P(t,﹣t2+4t﹣3),因為S△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當﹣t2+4t﹣3=1時,t1=t2=2,此時P點坐標為(2,1);當﹣t2+4t﹣3=﹣1時,t1=2+,t2=2﹣,此時P點坐標為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【點睛】本題考查了待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.18、(1)不可能;(2).【解析】

(1)利用確定事件和隨機事件的定義進行判斷;(2)畫樹狀圖展示所有12種等可能的結果數,再找出其中某顧客該天早餐剛好得到菜包和油條的結果數,然后根據概率公式計算.【詳解】(1)某顧客在該天早餐得到兩個雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結果數,其中某顧客該天早餐剛好得到菜包和油條的結果數為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.19、(1)一共調查了300名學生.(2)(3)體育部分所對應的圓心角的度數為48°.(4)1800名學生中估計最喜愛科普類書籍的學生人數為1.【解析】

(1)用文學的人數除以所占的百分比計算即可得解.(2)根據所占的百分比求出藝術和其它的人數,然后補全折線圖即可.(3)用體育所占的百分比乘以360°,計算即可得解.(4)用總人數乘以科普所占的百分比,計算即可得解.【詳解】解:(1)∵90÷30%=300(名),∴一共調查了300名學生.(2)藝術的人數:300×20%=60名,其它的人數:300×10%=30名.補全折線圖如下:(3)體育部分所對應的圓心角的度數為:×360°=48°.(4)∵1800×=1(名),∴1800名學生中估計最喜愛科普類書籍的學生人數為1.20、【解析】

由前面算式可以看出:算式的左邊利用平方差公式因式分解,中間的數字互為倒數,乘積為1,只剩下兩端的(1﹣)和(1+)相乘得出結果.【詳解】===.故答案為:.【點睛】本題考查了算式的運算規(guī)律,找出數字之間的聯系,得出運算規(guī)律,解決問題.21、(1)y=﹣3.4x+141.1;(1)當裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4萬元.【解析】

(1)根據題意可以得裝運甘藍的汽車為(1x+1)輛,裝運花椒的汽車為30﹣x﹣(1x+1)=(12﹣3x)輛,從而可以得到y(tǒng)與x的函數關系式;(1)根據裝花椒的汽車不超過8輛,可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,從而可以得到總利潤最大時,裝運各種產品的車輛數.【詳解】(1)若裝運核桃的汽車為x輛,則裝運甘藍的汽車為(1x+1)輛,裝運花椒的汽車為30﹣x﹣(1x+1)=(12﹣3x)輛,根據題意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.(1)根據題意得:,解得:7≤x≤,∵x為整數,∴7≤x≤2.∵10.6>0,∴y隨x增大而減小,∴當x=7時,y取最大值,最大值=﹣3.4×7+141.1=117.4,此時:1x+1=12,12﹣3x=1.答:當裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4萬元.【點睛】本題考查了一次函數的應用,解題的關鍵是熟練的掌握一次函數的應用.22、(1)y1=﹣t(t﹣30)(0≤t≤30);(2)∴y2=;(3)上市第20天,國內、外市場的日銷售總量y最大,最大值為80萬件.【解析】

(1)根據題意得出y1與t之間是二次函數關系,然后利用待定系數法求出函數解析式;(2)利用待定系數法分別求出兩個函數解析式,從而得出答案;(3)分0≤t<20、t=20和20≤t≤30三種情況根據y=y1+y2求出函數解析式,然后根據二次函數的性質得出最值,從而得出整體的最值.【詳解】解:(1)由圖表數據觀察可知y1與t之間是二次函數關系,設y1=a(t﹣0)(t﹣30)再代入t=5,y1=25可得a=﹣∴y1=﹣t(t﹣30)(0≤t≤30)(2)由函數圖象可知y2與t之間是分段的一次函數由圖象可知:0≤t<20時,y2=2t,當20≤t≤30時,y2=﹣4t+120,∴y2=,(3)當0≤t<20時,y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2,可知拋物線開口向下,t的取值范圍在對稱軸左側,y隨t的增大而增大,所以最大值小于當t=20時的值80,當20≤t≤30時,y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2,可知拋物線開口向下,t的取值范圍在對稱軸右側,y隨t的增大而減小,所以最大值為當t=20時的值80,故上市第20天,國內、外市場的日銷售總量y最大,最大值為80萬件.23、(1);(2);(3)最多獲利4480元.【解析】

(1)銷售量y為200件加增加的件數(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數的性質得到w=﹣20x2+3000x﹣108000的對稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據二次函數的性質得到當76≤x≤

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論