




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Intelligentenergy
AblueprintforcreatingvaluethroughAI-driventransformation
KPMG.MaketheDifference.
KPMGInternational
/intelligent
energy
Firstphase
Secondphase
Thirdphase
Keyconsiderations
Ataglance
Introduction
Researchfindings
Buildingtheintelligent
energycompany
GuidingyourAI
transformation
AIinenergy:Currentstate
Foreword
Thepaceoftechnologicaladvancementis
nothingshortofextraordinary.Ifthisreporthadbeenwrittensixmonthsago,itsconclusions
mightalreadyfeeloutofdate.Sixmonthsfromnow,theymayevolveagain.That’stherealitywenowoperatein—aworldwhereinnovationisnotonlyconstantbutacceleratingandwheretechnologiesoncethoughtofasfuturistic,suchasquantumandagenticAI,arerapidlymovingintothestrategicplanninghorizonofthe
energysector.
Inthenearterm,theindustryleaderswespeakwithpointtoagenticAIasatransformativeforce.Althoughtraditionalautomationhasdeliveredincremental
benefits,itsprogressisincreasinglyconstrainedbytheneedforexperthumanintervention—expertisethatisbothscarceanddiminishing.
AgenticAIoffersabreakthrough.Thesesystemscan
autonomouslymanageentireworkflows,complementingthenuancedjudgmentofhumanexpertsandmaking
complexdecisionswithoutdirectoversight,providing
recoursetoahumanexpertifandwhenrequired.Thelevelofimpactseemsdramatic:Onecompany,IheardpresentatCOP29,sharedthatbydeployingAIagents,they
reduceda21-dayprocesstojust18minutes.
Forenergycompanies,thecostofinactionisrising
fast—thosewhodelayriskbeinglockedintooutdated
infrastructures,talentmodels,andoperatingassumptionsthatmaybeunfitforpurposebytheendofthedecade.
ScalingAIisaboutreimaginingtheenterpriseandmeetingtheenergytrilemmaheadon,embeddingintelligence
acrossthevaluechaintosecuresupply,decarbonizeandcontrolcosts.Thisreportprovidesguidancefornavigatingthatfuture.
ForAItotrulyscaleanddelivervalue,energy
companiesmustrethinknotjusttheir
technology,buttheirentireoperatingmodel.
ThosethatcanalignAIwithbusinessstrategy,integratedataandtechnologyandcreate
aworkforcereadytoembraceAI-powered
decision-makingwilllikelybetheonesthatleadinthenexteraofenergytransformation.99
AnishDe—GlobalHeadofEnergyKPMGInternational
Foreword
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|2
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|3
Contents
02Foreword
04Ataglance
05Introduction
08Researchfindings
10AIinenergy:Currentstate
14Buildingtheintelligentenergycompany
18Thefirstphase:EnablingAItopeople
25Thesecondphase:EmbeddingAIintheflowofwork
30
Thethirdphase:Evolvingyourenergyecosystem
32Keyconsiderations
Conclusion
36
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|4
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Ataglance
Firstphase
Secondphase
Thirdphase
Keyconsiderations
Ataglance
Introduction
Researchfindings
Buildingtheintelligent
energycompany
GuidingyourAI
transformation
AIinenergy:Currentstate
Foreword
EnergycompaniesarebeginningtoscaletheirAIpilots
56%
havebeenpilotingAIbutonly13percentoperateanAIcenterofexcellence
Thereareearlysuccesses
efficiency
improvements
79%
haveseen
60%
ROIsof
greaterthan
10percent
74%
Thereisatwinfocusonefficiencyandgrowth
Revenuegrowth
65%Efficiency
Thedualityofenergycreationand
environmentalimpactisakeyconsideration
63%
71%
struggletobalanceAIusewithsustainabilitygoals
viewsustainabilityasamore
importantstrategicgoalthanAI
Experimentationforbreakthroughsisacriticalinvestmentarea
92%
believethatorganizationsthatembraceAIwilldevelopacompetitiveedgeoverthosethatdonot
areinvestinginfuture-focused
projectswithouttheexpectationofimmediatereturns
96%
TheindustryispreparingforanAIfuture
haveinvestedinanautomateddatafabricorhybridcloud,crossplatform,dataintegration
operateanenterprise-widecloudorhybrid-cloudITinfrastructure
63%
64%
Therearesignificantchallengestoscalingapplications
58%
havedataissueswithinconsistentformatsimpactingdataquality
faceethicsand
regulatoryissues
38%
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|5
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Introduction
Firstphase
Secondphase
Thirdphase
Keyconsiderations
Ataglance
Introduction
Researchfindings
Buildingtheintelligent
energycompany
GuidingyourAI
transformation
AIinenergy:Currentstate
Foreword
AIinenergyisaboutmorethanjustadoptingnewtechnologies—it’sabouttransforminghowenergyisgenerated,distributed,and
intelligentlymanagedtomaximizeefficiency,minimizewaste,andresponddynamicallytoreal-timedemandandsystemconditions.
Forleadersintheenergyindustry,standingstillisno
longeranoption.Customers,regulatorsandpartnersalikeexpectup-to-date,intelligentsystemscapableofdeliveringaffordable,reliableandsustainableenergy.Thebusinessesoftodaywillnotlookthesameby2030—andthejourneyfromheretothererequiresflexibility,foresightandthe
couragetoactinuncertaintimes.
Tounderstandhowthesectorispreparing,KPMG
interviewedandsurveyedAIleadersacrosstheenergy
industry,including163seniorexecutivesfrommid-to
large-sizedenergycompaniesacrosseightcountries
(Australia,Canada,China,France,Germany,Japan,the
UnitedKingdomandtheUnitedStates).WhatemergedisapictureofthecurrentstateofAIadoptionintheenergysector;insightsintohoworganizationsareapproachingAIstrategy,investmentandimplementation;and“noregrets”actionscompaniescantaketopreparetheirorganization
forthefuture,includingadoptingacomposableoperatingarchitecturethatenablesagility.
Thisreportexplores:
?HowtodefineAI-drivenvaluecreationinenergy—
UnderstandinghowAIcanenhanceoperationalefficiency,improvegridstability,supportsustainabilitygoalsanddrivecommercialsuccess.
?HowAIcanaddresschallengesaroundregulatory
compliance,cybersecurityandcross-functionalintegration.
?ThecharacteristicsofAI-readyenergyorganizations—
Identifyingwhatdifferentiateshigh-performingcompaniesandthecriticalenablersofAIadoption,includingdata
infrastructure,workforcereadinessandgovernancemodels.
?AnAImaturitymodel—Aframeworktohelpenergyorganizationsprogressthroughthreekeystages:
?EnablingworkforcesandbuildingAIfoundations
?EmbeddingAIacrosstheenterprise
?Evolvingoperatingmodelsandecosystems
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|6
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Figure1:EnergymustovercomestrategicbarriersforAIadoption
PercentagewhosaytheirorganizationhasfacedthefollowingchallengeswhenintegratingAI
Poordataquality
EmployeeresistancetochangeandreluctancetouseAItools
Ethicalrisks
Lackofcommunicationandalignmentbetweendepartments
BudgetrestrictionsorlackofinvestmentTimeandresourceconstraintsInconsistentdataformats
Securityanddataprivacyconcerns
LackofAIskillsorexpertiseamongworkforceLegalorregulatoryconstraints
Dif?cultyinmeasuringreturnoninvestment(ROI)
Lackofleadershipcommunicationandalignment
Datasilos
Lackofleadershipsupportandunderstanding
WhatchallengeshasyourorganizationfacedwhenintegratingAI?(Maximum5)n=163
Source:Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation,KPMGInternational,2025
24%
23%
22%
22%21%
21%21%
20%
20%
20%
19%
18%
15%
11%
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|7
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Keyrecommendations
WealsodiscoveredthatcapturingvaluefromAIrequiresastrategic,enterprise-wideapproach.Ourresearchidentifiesfourkeyrecommendations.
DesignanAI-first
businessstrategyand
transformationroadmap
PivotingtoanAI-firstapproachhelps
ensurethatintelligentsystemsand
data-driveninsightsinformevery
decision,frominfrastructureinvestment
toworkforceplanning.It’snotabout
boltingAIontothebusiness—instead,
it’saboutrebuildingthebusinessaroundAI.AIshouldenhanceoperational
efficiency,predictivemaintenance,safetyandsustainabilitywhilealigningwith
long-termbusinessgoals.Aclearroadmapshoulddefinehigh-impactAIusecases,
balancingshort-termcostreductionswithlong-termvaluecreation,helpingensureAIinvestmentsgeneratemeasurable
businessandenvironmentalbenefits.
Buildtrustintothe
transformationroadmapfromtheoutset
Trustiscriticalinanindustrywhere
safety,reliabilityandcomplianceare
paramount.AIadoptionmustincludetransparentgovernanceframeworks,robustriskmanagementandregulatoryalignmentfromthestart.Energyfirmsshouldengageregulators,employeesandexternalstakeholderstoaddressconcernsaboutdatasecurity,
AI-drivendecision-makingandethicalconsiderations.Byembedding
explainability,accountabilityand
fairnessintoAImodels,companiescanbuildtheconfidenceneededtoscaleAIacrossoperations.
CreateasustainabletechnologyanddatainfrastructureforAI
andagenticadoption
Scalabletechnologyanddata
foundationsareessentialforunlockingAI’sfullpotentialinenergy.Companiesshouldinvestindatagovernance,
datafabrics,cloud-basedplatforms
andhybridITinfrastructurestoenableseamlessAIintegration.Standardizingdataacrossdistributedenergy
networks,sensor-drivenindustrialsitesandreal-timegridoperationsenablesAImodelsandautonomousagentstofunctioneffectively.EquallyimportantisminimizingtheAIenergyfootprint,balancinginnovationwithsustainabilitygoalsandregulatoryrequirements.
BuildaculturethatusesAItouplifthumanpotential
AIshouldaugment,ratherthanreplace,humanexpertise.OrganizationsshouldfosteraculturewhereAIempowers
engineers,technicians,gridoperatorsanddecision-makersbyenhancing
insights,automatingroutinetasksandimprovingsafety.Investingin
AIliteracyandethicstraininghelps
ensureemployeesarepreparedforanintelligentfuture.
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|8
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Research
findings
IntroducingAItechnologyisacostlyendeavor,requiringsignificantinvestmentinhardwareupgrades,softwareprocurement,datainfrastructuretransformationandtherecruitmentofspecializedtalent.Forlargeenterpriseslikeours,whilethesecostscanbegraduallyabsorbed,theystillrepresentasubstantialexpenditure.Therefore,weneedtobeprudent,findingthemostcost-effectivesolutionswithinalimitedbudget.99
ChiefInformationOfficer—China
Theenergysectorisundergoingaprofoundtransformation,shapedbyshiftingmarketdynamics,technologicaldisruption,regulatorypressuresandtheglobalpushforsustainability.
Whatwasonceanindustrybuiltontraditionalextractiveand
network-basedmodelsisnowevolvingintoaninterconnected,digitallyenabledecosystem.
Fromexperimentationtoscale
AIadoptioninenergyhasmovedbeyondpilotprojects,with56percentofcompaniesscalingAIinitiativesand44percentintegratingAIasa
corepartofoperations.Despitedifferencesbetweenregulatedandunregulatedentities(aswellasthespecificnuancesofindividual
sub-sectors),thechallengesandopportunitiesaroundAItendtobe
broadlyconsistent.Companiesacrosstheenergyvaluechainare
convergingoncommonAIusecasesinareaslikeoperationalefficiency,assetoptimization,safety,sustainabilityandpredictivemaintenance.
Costreductiontofundfuturedevelopments
Manyorganizationsarepursuingaggressivecost-outprogramsin
responsetofluctuatingdemand,geopoliticaluncertaintiesandincreasingsustainabilityrequirements.RespondentsviewAIasakeyenablerof
operationalstreamlining,with79percentofcompaniesalreadyreportingmeasurableefficiencyimprovementsand60percentseeingROIsgreaterthan10percent.TheseAI-drivencostreductionsarealsofacilitating
reinvestment,creatingaself-fundingAItransformationmodelwheresavingsareredirectedintofurtherdigitalinnovation.
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|9
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Third
operationalvaluestreams
phase
LetAKIeayusairkayionsoe
GuidingyourAI
trneroaligoyno
Theindustryisfocusedonthefuture
Ninety-twopercentoforganizationsareinvestinginfuture-focusedAIprojectswithouttheexpectationofimmediatereturns.Energycompaniesaremakingsubstantialinvestments,with76percentplanningtoincreaseAIspending—63percentbymorethan
10percent.ThebiggestgrowthareasincludeAI-drivenautomation,predictiveanalyticsandAI-enhanced
productandservicedevelopment,where80percentofcompaniesareembeddingAIintotheirofferings.
SignificantbarriersremaintoscalingAI
OrganizationalhurdlesarehinderingAI’sfull-scale
adoption.Industryrespondentsciteinsufficientdata
management,governance,investmentandprioritizationresultingindataqualityissues(58percent);regulatorycomplexities(38percent);andbudgetconstraints
(37percent)askeychallenges.Thereisalsoalackofconnectionandintegrationbetweenteamscharged
withimprovingdataandteamsdevelopingAI.Only
13percentofenergycompaniescurrentlyoperateanAICenterofExcellence,withAIleadershipfragmentedacrossIT(20percent)oracombinationofITand
businessfunctions(34percent).
Movingforward
ThenextphaseofAIinenergywillbeaboutturning
promiseintotangible,lastingimpact.CEOsandsenior
leadersinourresearchrecognizetheneedforchange,buttosucceed,thesectorshouldmovebeyondincrementaladoptionandfocusonscalingAIinwaysthatcutcosts,
improvereliabilityandsupportsustainability.
Emergingtrendsprovideaclearpathforward.The
companiesthatsucceedwilllikelybethosethat
streamlinetheiroperatingmodels,integrateAIacrossvaluechainsanddevelopthedataandtechnology
infrastructurenecessarytofuelAI-drivengrowth.
Weapproach[AI]withexcitement,but
alsowithalotofcaution.Wedon’twant
tohavethetoolprovideinputthat’sgoingtobereliedonbyouremployeesorour
regulatorswithouthavingameansof
validatingthedata.There’sstillahuman
involvedineveryaspectoftheoutputfromGenAIjusttoensureaccuracy.99
ChiefRiskOfficer—US
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|10
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
AIinenergy:
Currentstate
AIprojectswithintheenergysectorfallintotwocategories:
initiativeswherethereismeasurableROIandpassionprojectsdrivenbyindustryvalues.
Value:MaximizingefficiencyandROI
Value-ledinitiativesthataredesignedwithclear,quantifiableoutcomes
aredrivingAIadoptioninenergy,specificallyinareaswhereintelligent
toolsandtechnologiesreduceinefficienciesandoperationalcostswhilealsomitigatingrisksandimprovingcapabilitiesascompaniesgrapplewiththetrilemma.
ManyAI-drivenvalueinitiativesdelivertransformativeperformancegains,sometimesachievingsubstantialefficiencyimprovementsbyautomatingoreliminatingentireprocesses.Forexample,predictivemaintenancecananticipatefailuresinturbines,pipelinesandrefineries,reducingunplanneddowntimeandextendingassetlifecycles.Supplychainoptimizationhelpsensurebetterinventoryforecastinganddistribution,whileintelligent
demandmodelsfine-tunepowerconsumptionacrossfacilities,minimizingwasteandhelpingensureasteadysupplyofpower.
Intheshortterm,we’regoingtobenefitmostfromproductivitygains,sowe’llbeabletoreduceourdependenceon
managedserviceproviders.We’llbeabletodelivermorewithless,whichisimmediatevalueonthebalancesheet.Inthemediumterm,wewillseebenefitsaroundourassets,soreductioninassetfailures,increasedabilitytoplanandschedulemaintenance.AlsobeingabletosearchthroughmanualsfromfortyyearsagousingLLMsisfantasticandthat’sarealstepchangeintermsofhowyoucanmanagefortyyearsofagingassets.99
SeniorVicePresident,CorporateServicesandChiefRiskOfficer—US
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|11
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Passion:Drivingsafety,sustainabilityandpurpose
TheenergysectorisdeployingAIinpassionprojectsthatalignwithsafetyandsustainabilitygoals.Theseinitiativeshelpensureregulatorycompliance,reduceenvironmentalimpact,andupholdcorporateresponsibilitystandards—whilealsounlockingeconomicvaluethroughcost
savings,operationalefficiency,andimprovedriskmanagement.
Forexample,AI-drivensafetymonitoringistransformingriskmanagementandisalreadyprovingcriticalin
preventingindustrialaccidents,oilspillsandreducing
injuriesandmortality.Machinelearningalgorithms
continuouslyscanenvironmentalconditions,allowing
energycompaniestopreemptivelyaddresssafetyrisksbeforeincidentsoccur.Forexample,intelligentsystemsanalyzesensordatafromdrillingsites,powerplants
andrefineriestodetecthazardousgasleaks,structuralweaknessesorpotentialequipmentfailures.
AIisalsoagame-changerinenvironmentalmonitoring.Advancedsatelliteimageryandsensornetworkstrackemissions,detectwildlifedisturbancesnearminingsitesandflagillegalactivitiessuchasunauthorizeddrillingorpipelinetampering.
Workerwell-beinginitiativesareanotherareawhere
AIismakinganimpact.AI-poweredfatiguemonitoringsystemsusewearablesensors,biometrictrackingandreal-timevideoanalyticstodetectsignsofexhaustionorcognitivestrainamongfieldworkers.Thesesolutionshelppreventworkplaceinjuries,ensurecompliancewithlaborsafetystandardsandimproveoverallworkforce
healthandproductivity.
AgenticAIinenergy
AgenticAIisthenextevolutionofartificialintelligence—movingfrompassivetoolsthatrespondtocommands
toautonomoussystemscapableofmakingdecisionsandtakingaction.Agenticwilllikelybeatransformativetechnologyfortheenergyindustry.
Fromautomationtoautonomy
AgenticAIenablesintelligentsystemstoact
independentlytowardspredefinedgoalswithoutconstanthumaninput.Intheenergysector,thismeansAI
agentscanautonomouslymonitorgridhealth,optimizeloadbalancing,schedulemaintenanceandevenadjustgenerationlevelsbasedonreal-timedemandforecasts.
Theycananalyzevastamountsofreal-timedatafrom
distributedassets—solar,wind,storage,EVs—anddynamicallycoordinatetheiroutput.Theseagents
operatecontinuously,adapttochangingconditions
andmakedecisionsthatpreviouslyrequiredmanualintervention—dramaticallyimprovingresponsivenessandefficiency.
Transformingcustomerandmarketinteractions
Onthedemandside,agenticAIcanempowerindustrialandcommercialcustomerstoautomaticallybuy,store,orsellenergybasedonpricesignals,usagepatterns,
orcarbontargets.Theseagentscannegotiateenergycontracts,managemicrogrids,orbidintoflexibility
marketswithminimalhumanoversight,openingupnewvaluestreamsandradicallystreamliningenergyparticipationforcustomers.
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|12
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Acceleratingdecarbonizationandinnovation
Bycontinuouslylearningandoptimizingacrossthe
system,autonomousagentscanplayakeyrolein
acceleratingdecarbonization.Theycanoptimizedemandforhigh-usagecustomers,reduceenergywasteand
orchestratelow-carbonsolutionsacrosscomplex
ecosystems.Astheenergyindustryevolvesintoa
dynamic,software-definedinfrastructure,agenticAIwilllikelybecentraltounlockinginnovation,reducingcostsandensuringresilienceinanet-zerofuture.
UnlockingAIpotential
ThepotentialofAI—traditional,generative,and
agentic—isvast.Energyorganizationsmayinevitably
identifynumerouspriorityusecases.Butwithout
orchestration,effortscanbecomesiloedormisaligned.Successdependsonharmonizingtheseusecaseswitheachotherandwithadjacenttechnologiessuchasdigitaltwins,HPC,CRMandAR/VR.
Evolvingtheenterprisetechnologyarchitecture
AImustintegratewiththeexistingtechstack.Thisrequiresreviewingenterprisearchitecturetoidentifyopportunitiesforstreamliningandmodernization.
Dataiscentral—AIneedsstructuredandunstructureddatafromvariedsources.Robustcapabilitiesfor
ingestion,storage,governanceandaccesscontrolsareessentialforscale.
Newlayersoforchestrationrequired
GenerativeandagenticAIdemandneworchestrationlayerstomanagedata,prompts,andinteractions
acrossagentsandsystems.Theseshouldalignwithenterprisegoals.Securityshouldrunthroughoutthestack—fromdesigntooperation.Finally,intuitive,user-friendlyinterfacesarecriticaltodrivetrust,
adoptionandlong-termvaluerealization.
Evolvingtheecosystem
Theroleoftheecosystemarchitectisemergingas
acriticalcomplementtothetraditionalenterprise
architect.Whileenterprisearchitectsfocuson
optimizinginternalsystemsandstructures,
ecosystemarchitectstakeabroader,outward-lookingview.Theyareresponsiblefordesigningthe
interconnectedplatforms,dataflows,andcollaborativeframeworksthatenableutilitiestooperateas
partofawider,intelligentecosystem—includingcustomers,competitors,regulators,suppliersandtechnologypartners.
AgenticAI
isthenextevolutionof
artificialintelligence—
movingfrompassivetoolsthatrespondtocommandstoautonomoussystems
capableofmakingdecisionsandtakingaction.
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|13
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
t
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北押運(yùn)證模擬考試題及答案
- 2025年新沂數(shù)學(xué)高考真題及答案
- 順德數(shù)學(xué)高考真題及答案
- 生物醫(yī)藥冷庫(kù)施工方案
- 鎮(zhèn)江市防水毯施工方案
- 2025年社區(qū)護(hù)理題庫(kù)及答案大全
- 浙江實(shí)木地板施工方案
- 2025年護(hù)理病理基礎(chǔ)知識(shí)題庫(kù)及答案
- 惠州發(fā)光立體字施工方案
- 工程質(zhì)量管理網(wǎng)課答案
- 2025年陜西音樂(lè)聯(lián)考試題及答案
- 2025年高一的數(shù)學(xué)知識(shí)點(diǎn)大綱
- 2025至2030拖拉機(jī)市場(chǎng)前景分析及行業(yè)深度研究及發(fā)展前景投資評(píng)估分析
- 2025年平面圖形的畫(huà)法說(shuō)課教學(xué)課件
- 養(yǎng)老院保潔培訓(xùn)課件
- 中外運(yùn)社招在線測(cè)評(píng)題
- 《生成式人工智能》 課件 第4章 Transformer模型
- 中醫(yī)圍手術(shù)期護(hù)理
- 監(jiān)控資料留存管理制度
- 2025年遼寧高考地理試卷真題答案詳解講評(píng)課件(黑龍江吉林內(nèi)蒙古適用)
- 2025屆上海市高考英語(yǔ)考綱詞匯表
評(píng)論
0/150
提交評(píng)論