函數(shù)的單調(diào)性課件-高二下學(xué)期數(shù)學(xué)人教A版選擇性3_第1頁
函數(shù)的單調(diào)性課件-高二下學(xué)期數(shù)學(xué)人教A版選擇性3_第2頁
函數(shù)的單調(diào)性課件-高二下學(xué)期數(shù)學(xué)人教A版選擇性3_第3頁
函數(shù)的單調(diào)性課件-高二下學(xué)期數(shù)學(xué)人教A版選擇性3_第4頁
函數(shù)的單調(diào)性課件-高二下學(xué)期數(shù)學(xué)人教A版選擇性3_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第五章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用5.3.1函數(shù)的單調(diào)性學(xué)習(xí)目標(biāo)1.結(jié)合實例,歸納出函數(shù)的單調(diào)性與其導(dǎo)函數(shù)正負(fù)之間的關(guān)系.2.結(jié)合例題,總結(jié)出利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的基本步驟.3.能利用導(dǎo)數(shù)判斷簡單函數(shù)的單調(diào)性并求出單調(diào)區(qū)間.情景導(dǎo)入函數(shù)單調(diào)性的定義是什么?復(fù)習(xí)舊識

abxy=f(x)x1x2f(x1)f(x2)<

abxy=f(x)x1x2f(x1)f(x2)>

單調(diào)函數(shù)的圖像D=(a,b)D稱為單調(diào)區(qū)間新課引入

這個問題在形和數(shù)兩個角度都不能進(jìn)行下去,都不能解決這個問題,所以我們迫切需要尋求新的方法來研究函數(shù)的單調(diào)性。從圖像入手:描點作圖,觀察圖像,寫出單調(diào)區(qū)間,但問題是此函數(shù)作圖太過于困難。正負(fù)難判由函數(shù)單調(diào)性的定義知:

函數(shù)的平均變化率導(dǎo)數(shù)瞬時變化率

極限

利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.新課引入問題1

觀察下面常見函數(shù)的圖象,能說出函數(shù)的導(dǎo)數(shù)的正負(fù)與單調(diào)性的關(guān)系嗎?深入學(xué)習(xí)xyO(1)xyO(2)xyO(3)xyO(4)下面我們來逐一研究:xyOy=xxyOy′=1

深入學(xué)習(xí)

xyO

y=x2xyOy′=2x

深入學(xué)習(xí)xyOy=x3xyOy′=3x2

深入學(xué)習(xí)xyOxyO

深入學(xué)習(xí)猜想結(jié)論:

深入學(xué)習(xí)深入學(xué)習(xí)函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系:

深入學(xué)習(xí)追問1如果在某個區(qū)間上恒有f′(x)=0,那么函數(shù)y=f(x)有什么特性函數(shù)y=f(x)在這個區(qū)間上是常數(shù)函數(shù).追問2存在有限個點使得f'(x)=0,其余點都恒有f′(x)>0,則f(x)有什么特性f(x)仍為增函數(shù).例如:對于函數(shù)y=x3,y′=3x2.當(dāng)x=0時,y′=0,當(dāng)x>0時,y′>0,

而函數(shù)y=x3在R上單調(diào)遞增.xyO導(dǎo)數(shù)的正負(fù)函數(shù)的增減充分不必要條件深入學(xué)習(xí)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系:在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與導(dǎo)數(shù)f′(x)的關(guān)系f(x)在(a,b)上單調(diào)遞增f′(x)≥0恒成立f(x)在(a,b)上單調(diào)遞減f(x)在(a,b)上為常函數(shù)f′(x)=0恒成立f′(x)≤0恒成立深入學(xué)習(xí)1.利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:遷移應(yīng)用解:1.利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:解:(2)因為f(x)=exx,其定義域為R.所以f′(x)=ex1.令f′(x)=0,得x=0所以當(dāng)x∈(∞,0)時,f′(x)<0當(dāng)x∈(0,+∞)時,f′(x)>0.所以,函數(shù)f(x)=exx在(∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.遷移應(yīng)用課堂小結(jié)

A堂測

堂測2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論