




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題19特殊平行四邊形一、菱形定義:一組鄰邊相等的平行四邊形叫做菱形.2.性質(zhì):菱形的四條邊相等,兩條對(duì)角線互垂直平分,且每一條對(duì)角線平分一組對(duì)角.
3.判定方法:①一組鄰邊相等的平行四邊形是菱形;
②對(duì)角線互相垂直的平行四邊形是菱形;
③四條邊都相等的四邊形是菱形.
4.設(shè)菱形對(duì)角線長(zhǎng)分別為l1,l2,則S菱形=SKIPIF1<0l1l2.二、矩形定義:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形.性質(zhì):矩形的對(duì)角線互相平分且相等,四個(gè)角都是直角.
判定方法:①有三個(gè)角是直角的四邊形是矩形;
②對(duì)角線相等的平行四邊形是矩形;
③有一個(gè)角是直角的平行四邊形是矩形.
4.設(shè)矩形的長(zhǎng)和寬分別為a,b,則S矩形=ab.三、正方形1.正方形的定義:有一組鄰邊相等,并且有一個(gè)角是直角的平行四邊形.2.正方形的性質(zhì)(1)正方形既有矩形的性質(zhì),又有菱形的性質(zhì).(2)正方形的四個(gè)角都是直角,四條邊相等.
(3)正方形的對(duì)角線相等且互相垂直平分.
3.正方形的判定方法(1)有一組鄰邊相等的矩形是正方形.
(2)對(duì)角線互相垂直的矩形是正方形.
(3)有一個(gè)角是直角的菱形是正方形.
(4)對(duì)角線相等的菱形是正方形.
4.平行四邊形、矩形、菱形與正方形之間的聯(lián)系【考點(diǎn)1】菱形的性質(zhì)與判定【例1】(性質(zhì))(2022·四川自貢)如圖,菱形SKIPIF1<0對(duì)角線交點(diǎn)與坐標(biāo)原點(diǎn)SKIPIF1<0重合,點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)菱形的中心對(duì)稱(chēng)性,A、C坐標(biāo)關(guān)于原點(diǎn)對(duì)稱(chēng),利用橫反縱也反的口訣求解即可.【詳解】∵菱形是中心對(duì)稱(chēng)圖形,且對(duì)稱(chēng)中心為原點(diǎn),∴A、C坐標(biāo)關(guān)于原點(diǎn)對(duì)稱(chēng),∴C的坐標(biāo)為SKIPIF1<0,故選C.【例2】(判定)(2022·黑龍江齊齊哈爾)如圖,在四邊形ABCD中,AC⊥BD,垂足為O,SKIPIF1<0,要使四邊形ABCD為菱形,應(yīng)添加的條件是______________.(只需寫(xiě)出一個(gè)條件即可)【答案】AB=CD或AD∥BC或OA=OC或OB=OD等(只需寫(xiě)出一個(gè)條件即可)【分析】由菱形的判定方法進(jìn)行判斷即可.【詳解】解:可以添加的條件是:AB=CD,理由如下:∵SKIPIF1<0,∴四邊形ABCD是平行四邊形,∵AC⊥BD,∴四邊形ABCD是菱形;也可以添加條件是:SKIPIF1<0,利用如下:∵SKIPIF1<0,∴四邊形ABCD是平行四邊形,∵AC⊥BD,∴四邊形ABCD是菱形;也可以添加的條件是OA=OC,利用如下:∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∵AC⊥BD,∴四邊形ABCD是菱形;也可以添加的條件是OB=OD,利用如下:∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∵AC⊥BD,∴四邊形ABCD是菱形.故答案為:AB=CD或AD∥BC或OA=OC或OB=OD等.(只需寫(xiě)出一個(gè)條件即可)菱形的證明方法(三種)①先證明四邊形ABCD為平行四邊形,再證明平行四邊形ABCD的任一組鄰邊相等.②先證明四邊形ABCD為平行四邊形,再證明平行四邊形ABCD的對(duì)角線互相垂直.③證明四邊形ABCD的四條邊相等.1.(2022·海南)如圖,菱形SKIPIF1<0中,點(diǎn)E是邊SKIPIF1<0的中點(diǎn),SKIPIF1<0垂直SKIPIF1<0交SKIPIF1<0的延長(zhǎng)線于點(diǎn)F,若SKIPIF1<0,則菱形SKIPIF1<0的邊長(zhǎng)是(
)A.3 B.4 C.5 D.SKIPIF1<0【答案】B【分析】過(guò)C作CM⊥AB延長(zhǎng)線于M,根據(jù)SKIPIF1<0設(shè)SKIPIF1<0,由菱形的性質(zhì)表示出BC=4x,BM=3x,根據(jù)勾股定理列方程計(jì)算即可.【詳解】過(guò)C作CM⊥AB延長(zhǎng)線于M,∵SKIPIF1<0∴設(shè)SKIPIF1<0∵點(diǎn)E是邊SKIPIF1<0的中點(diǎn)∴SKIPIF1<0∵菱形SKIPIF1<0∴SKIPIF1<0,CE∥AB∵SKIPIF1<0⊥SKIPIF1<0,CM⊥AB∴四邊形EFMC是矩形∴SKIPIF1<0,SKIPIF1<0∴BM=3x在Rt△BCM中,SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去)∴SKIPIF1<0故選:B.2.(2021·廣東)下列命題中,為真命題的是()(1)對(duì)角線互相平分的四邊形是平行四邊形(2)對(duì)角線互相垂直的四邊形是菱形(3)對(duì)角線相等的平行四邊形是菱形(4)有一個(gè)角是直角的平行四邊形是矩形A.(1)(2) B.(1)(4) C.(2)(4) D.(3)(4)【答案】B【分析】正確的命題叫真命題,根據(jù)定義解答.【詳解】解:對(duì)角線互相平分的四邊形是平行四邊形,故(1)是真命題;對(duì)角線互相垂直的平行四邊形是菱形,故(2)不是真命題;對(duì)角線相等的平行四邊形是矩形,故(3)不是真命題;有一個(gè)角是直角的平行四邊形是矩形,故(4)是真命題;故選:B.3.(2022·內(nèi)蒙古呼和浩特·中考真題)如圖,四邊形SKIPIF1<0是菱形,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0中點(diǎn),SKIPIF1<0是對(duì)角線SKIPIF1<0上一點(diǎn),且SKIPIF1<0,則SKIPIF1<0的值是(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】取AC的中點(diǎn)M,連接EM設(shè)SKIPIF1<0由中位線性質(zhì)可得SKIPIF1<0再根據(jù)SKIPIF1<0,SKIPIF1<0可得出SKIPIF1<0從而得到FC的長(zhǎng),即可得到SKIPIF1<0的結(jié)果.【詳解】解:如圖所示:取AC的中點(diǎn)M,連接EM,DM,設(shè)SKIPIF1<0∵點(diǎn)SKIPIF1<0是SKIPIF1<0中點(diǎn),∴EM是SKIPIF1<0的中位線,SKIPIF1<0SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是菱形,SKIPIF1<0,∠AMD=90°,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0∴DM=SKIPIF1<0,∴AM=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:D.4.(2022·內(nèi)蒙古赤峰)如圖,菱形SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0均在坐標(biāo)軸上,SKIPIF1<0,點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0是SKIPIF1<0上的一動(dòng)點(diǎn),則SKIPIF1<0的最小值是(
)A.3 B.5 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】直線AC上的動(dòng)點(diǎn)P到E、D兩定點(diǎn)距離之和最小屬“將軍飲馬”模型,由D關(guān)于直線AC的對(duì)稱(chēng)點(diǎn)B,連接BE,則線段BE的長(zhǎng)即是PD+PE的最小值.【詳解】如圖:連接BE,,∵菱形ABCD,∴B、D關(guān)于直線AC對(duì)稱(chēng),∵直線AC上的動(dòng)點(diǎn)P到E、D兩定點(diǎn)距離之和最小∴根據(jù)“將軍飲馬”模型可知BE長(zhǎng)度即是PD+PE的最小值.,∵菱形ABCD,SKIPIF1<0,點(diǎn)SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴△CDB是等邊三角形∴SKIPIF1<0∵點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,且BE⊥CD,∴SKIPIF1<0故選:A.5.(2021·遼寧)如圖,在SKIPIF1<0中,點(diǎn)O是SKIPIF1<0的中點(diǎn),連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0的延長(zhǎng)線于點(diǎn)E,連接SKIPIF1<0、SKIPIF1<0.(1)求證:四邊形SKIPIF1<0是平行四邊形;(2)若SKIPIF1<0,判斷四邊形SKIPIF1<0的形狀,并說(shuō)明理由.【答案】(1)證明見(jiàn)詳解;(2)四邊形ACDE是菱形,理由見(jiàn)詳解.【分析】(1)利用平行四邊形的性質(zhì),即可判定SKIPIF1<0,即可得到SKIPIF1<0,再根據(jù)CD∥AE,即可證得四邊形ACDE是平行四邊形;(2)利用(1)的結(jié)論和平行四邊形的性質(zhì)可得AC=CD,由此即可判定是菱形.【詳解】(1)證明:在SKIPIF1<0ABCD中,AB∥CD,∴SKIPIF1<0,∵點(diǎn)O為AD的中點(diǎn),∴SKIPIF1<0,在SKIPIF1<0與SKIPIF1<0中,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵BE∥CD,∴四邊形ACDE是平行四邊形;(2)解:由(1)知四邊形ACDE是平行四邊形,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴四邊形ACDE是菱形.【考點(diǎn)2】矩形的性質(zhì)與判定【例3】(性質(zhì))(2021·四川巴中·中考真題)如圖,矩形AOBC的頂點(diǎn)A、B在坐標(biāo)軸上,點(diǎn)C的坐標(biāo)是(﹣10,8),點(diǎn)D在AC上,將SKIPIF1<0BCD沿BD翻折,點(diǎn)C恰好落在OA邊上點(diǎn)E處,則tan∠DBE等于()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先根據(jù)四邊形ABCD是矩形,C(-10,8),得出BC=AO=10,AC=OB=8,∠A=∠O=∠C=90°,再由折疊的性質(zhì)得到CD=DE,BC=BE=10,∠DEB=∠C=90°,利用勾股定理先求出OE的長(zhǎng),即可得到AE,再利用勾股定理求出DE,利用SKIPIF1<0求解即可.【解析】解:∵四邊形ABCD是矩形,C(-10,8),∴BC=AO=10,AC=OB=8,∠A=∠O=∠C=90°,由折疊的性質(zhì)可知:CD=DE,BC=BE=10,∠DEB=∠C=90°,在直角三角形BEO中:SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0在直角三角形ADE中:SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,∵∠DEB=90°,∴SKIPIF1<0,故選D.【例4】(判定)(2022·陜西)在下列條件中,能夠判定SKIPIF1<0為矩形的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)矩形的判定定理逐項(xiàng)判斷即可.【詳解】當(dāng)AB=AC時(shí),不能說(shuō)明SKIPIF1<0是矩形,所以A不符合題意;當(dāng)AC⊥BD時(shí),SKIPIF1<0是菱形,所以B不符合題意;當(dāng)AB=AD時(shí),SKIPIF1<0是菱形,所以C不符合題意;當(dāng)AC=BD時(shí),SKIPIF1<0是矩形,所以D符合題意.故選:D.矩形的證明方法(三種)①先證明四邊形ABCD為平行四邊形,再證明平行四邊形ABCD的任意一個(gè)角為直角.②先證明四邊形ABCD為平行四邊形,再證明平行四邊形ABCD的對(duì)角線相等.③證明四邊形ABCD的三個(gè)角是直角.1.(2022·貴州黔東南)如圖,矩形SKIPIF1<0的對(duì)角線SKIPIF1<0,SKIPIF1<0相交于點(diǎn)SKIPIF1<0,SKIPIF1<0//SKIPIF1<0,SKIPIF1<0//SKIPIF1<0.若SKIPIF1<0,則四邊形SKIPIF1<0的周長(zhǎng)是_______.【答案】20【分析】首先由四邊形ABCD是矩形,根據(jù)矩形的性質(zhì),易得OC=OD=5,由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又可判定四邊形CODE是菱形,繼而求得答案.【詳解】解:∵四邊形ABCD是矩形,∴AC=BD=10,OA=OC,OB=OD,∴OC=OD=SKIPIF1<0BD=5,∵SKIPIF1<0//SKIPIF1<0,SKIPIF1<0//SKIPIF1<0.,∴四邊形CODE是平行四邊形,∵OC=OD=5,∴四邊形CODE是菱形,∴四邊形CODE的周長(zhǎng)為:4OC=4×5=20.故答案為20.2.(2022·廣西賀州)如圖,在矩形ABCD中,SKIPIF1<0,E,F(xiàn)分別是AD,AB的中點(diǎn),SKIPIF1<0的平分線交AB于點(diǎn)G,點(diǎn)P是線段DG上的一個(gè)動(dòng)點(diǎn),則SKIPIF1<0的周長(zhǎng)最小值為_(kāi)_________.【答案】SKIPIF1<0##SKIPIF1<0【分析】在CD上取點(diǎn)H,使DH=DE,連接EH,PH,過(guò)點(diǎn)F作FK⊥CD于點(diǎn)K,可得DG垂直平分EH,從而得到當(dāng)點(diǎn)F、P、H三點(diǎn)共線時(shí),SKIPIF1<0的周長(zhǎng)最小,最小值為FH+EF,再分別求出EF和FH,即可求解.【詳解】解:如圖,在CD上取點(diǎn)H,使DH=DE,連接EH,PH,過(guò)點(diǎn)F作FK⊥CD于點(diǎn)K,在矩形ABCD中,∠A=∠ADC=90°,AD=BC=6,CD=AB=8,∴△DEH為等腰直角三角形,∵DG平分∠ADC,∴DG垂直平分EH,∴PE=PH,∴SKIPIF1<0的周長(zhǎng)等于PE+PF+EF=PH+PF+EF≥FH+EF,∴當(dāng)點(diǎn)F、P、H三點(diǎn)共線時(shí),SKIPIF1<0的周長(zhǎng)最小,最小值為FH+EF,∵E,F(xiàn)分別是AD,AB的中點(diǎn),∴AE=DE=DH=3,AF=4,∴EF=5,∵FK⊥CD,∴∠DKF=∠A=∠ADC=90°,∴四邊形ADKF為矩形,∴DK=AF=4,F(xiàn)K=AD=6,∴HK=1,∴SKIPIF1<0,∴FH+EF=SKIPIF1<0,即SKIPIF1<0的周長(zhǎng)最小為SKIPIF1<0.故答案為:SKIPIF1<03.(2022·遼寧營(yíng)口)如圖,在矩形SKIPIF1<0中,點(diǎn)M在SKIPIF1<0邊上,把SKIPIF1<0沿直線SKIPIF1<0折疊,使點(diǎn)B落在SKIPIF1<0邊上的點(diǎn)E處,連接SKIPIF1<0,過(guò)點(diǎn)B作SKIPIF1<0,垂足為F,若SKIPIF1<0,則線段SKIPIF1<0的長(zhǎng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先證明△BFC≌△CDE,可得DE=CF=2,再用勾股定理求得CE=SKIPIF1<0,從而可得AD=BC=SKIPIF1<0,最后求得AE的長(zhǎng).【詳解】解:∵四邊形ABCD是矩形,∴BC=AD,∠ABC=∠D=90°,AD∥BC,∴∠DEC=∠FCB,∵SKIPIF1<0,∴∠BFC=∠CDE,∵把SKIPIF1<0沿直線SKIPIF1<0折疊,使點(diǎn)B落在SKIPIF1<0邊上的點(diǎn)E處,∴BC=EC,在△BFC與△CDE中,SKIPIF1<0∴△BFC≌△CDE(AAS),∴DE=CF=2,∴SKIPIF1<0,∴AD=BC=CE=SKIPIF1<0,∴AE=AD-DE=SKIPIF1<0,故選:A.4.(2021·四川自貢市·中考真題)如圖,在矩形ABCD中,點(diǎn)E、F分別是邊AB、CD的中點(diǎn).求證:DE=BF.【答案】證明見(jiàn)試題解析.【分析】由矩形的性質(zhì)和已知得到DF=BE,AB∥CD,故四邊形DEBF是平行四邊形,即可得到答案.【詳解】∵四邊形ABCD是矩形,∴AB∥CD,AB=CD,又E、F分別是邊AB、CD的中點(diǎn),∴DF=BE,又AB∥CD,∴四邊形DEBF是平行四邊形,∴DE=BF.5.(2021·青海西寧·中考真題)如圖,四邊形SKIPIF1<0是菱形,對(duì)角線SKIPIF1<0,SKIPIF1<0相交于點(diǎn)O,SKIPIF1<0.(1)求證:四邊形SKIPIF1<0是矩形;(2)若SKIPIF1<0,SKIPIF1<0,求矩形SKIPIF1<0的周長(zhǎng).【答案】(1)見(jiàn)解析;(2)SKIPIF1<0【分析】(1)利用全等三角形性質(zhì)和菱形對(duì)角線互相垂直平分,證四邊形SKIPIF1<0是矩形;(2)根據(jù)菱形性質(zhì)得出SKIPIF1<0,SKIPIF1<0,由含30度直角三角形的性質(zhì)求出OB,即可求解.【解析】(1)證明:∵△BOC?△CEB.∴SKIPIF1<0,SKIPIF1<0(全等三角形的對(duì)應(yīng)邊相等)∴四邊形SKIPIF1<0是平行四邊形(兩組對(duì)邊分別相等的四邊形是平行四邊形)∵四邊形SKIPIF1<0是菱形,∴SKIPIF1<0(菱形的兩條對(duì)角線互相垂直)∴SKIPIF1<0∴四邊形SKIPIF1<0是矩形(有一個(gè)角是直角的平行四邊形是矩形);(2)∵四邊形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0(菱形的四條邊相等),SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半)SKIPIF1<0,∴矩形SKIPIF1<0的周長(zhǎng)SKIPIF1<0.【考點(diǎn)3】正方形的性質(zhì)與判定【例5】(性質(zhì))(2022·江蘇無(wú)錫)如圖,正方形ABCD的邊長(zhǎng)為8,點(diǎn)E是CD的中點(diǎn),HG垂直平分AE且分別交AE、BC于點(diǎn)H、G,則BG=________.【答案】1【分析】連接AG,EG,根據(jù)線段垂直平分線性質(zhì)可得AG=EG,由點(diǎn)E是CD的中點(diǎn),得CE=4,設(shè)BG=x,則CG=8-x,由勾股定理,可得出(8-x)2+42=82+x2,求解即可.【詳解】解:連接AG,EG,如圖,∵HG垂直平分AE,∴AG=EG,∵正方形ABCD的邊長(zhǎng)為8,∴∠B=∠C=90°,AB=BC=CD=8,∵點(diǎn)E是CD的中點(diǎn),∴CE=4,設(shè)BG=x,則CG=8-x,由勾股定理,得EG2=CG2+CE2=(8-x)2+42,AG2=AB2+BG2=82+x2,∴(8-x)2+42=82+x2,解得:x=1,故答案為:1.【例6】(判定)(2022·湖北隨州)七巧板是一種古老的中國(guó)傳統(tǒng)智力玩具,如圖,在正方形紙板ABCD中,BD為對(duì)角線,E,F(xiàn)分別為BC,CD的中點(diǎn),SKIPIF1<0分別交BD,EF于O,P兩點(diǎn),M,N分別為BO,DC的中點(diǎn),連接AP,NF,沿圖中實(shí)線剪開(kāi)即可得到一副七巧板,則在剪開(kāi)之前,關(guān)于該圖形,下列說(shuō)法:①圖中的三角形都是等腰直角三角形;②四邊形MPEB是菱形;③四邊形PFDM的面積占正方形ABCD面積的SKIPIF1<0.正確的有(
)A.只有① B.①② C.①③ D.②③【答案】C【分析】先根據(jù)正方形的性質(zhì)和中位線定理證明圖中所有三角形是等腰直角三角形,再證明四邊形MPEB是平行四邊形但不是菱形,最后再證明四邊形PFDM的面積占正方形ABCD面積的SKIPIF1<0即可.【詳解】解:∵四邊形ABCD是正方形,∴∠ABO=∠ADB=∠CBD=∠BDC=45°,∠BAD=∠BCD=90°,∴△ABD、△BCD是等腰直角三角形,∵SKIPIF1<0,∴∠APF=∠APE=90°,∵E,F(xiàn)分別為BC,CD的中點(diǎn),∴EF是△BCD的中位線,CE=SKIPIF1<0BC,CF=SKIPIF1<0CD,∴CE=CF,∵∠C=90°,∴△CEF是等腰直角三角形,
∴EFSKIPIF1<0BD,EF=SKIPIF1<0BD,∴∠APE=∠AOB=90°,∠APF=∠AOD=90°,∴△ABO、△ADO是等腰直角三角形,∴AO=BO,AO=DO,∴BO=DO,∵M(jìn),N分別為BO,DO的中點(diǎn),∴OM=BM=SKIPIF1<0BO,ON=ND=SKIPIF1<0DO,∴OM=BM=ON=ND,∵∠BAO=∠DAO=45°,∴由正方形是軸對(duì)稱(chēng)圖形,則A、P、C三點(diǎn)共線,PE=PF=SKIPIF1<0EF=ON=BM=OM,連接PC,如圖,∴NF是△CDO的中位線,∴NFSKIPIF1<0AC,NF=SKIPIF1<0OC=SKIPIF1<0OD=ON=ND,∴∠ONF=180°-∠COD=90°,∴∠NOP=∠OPF=∠ONF=90°,∴四邊形FNOP是矩形,∴四邊形FNOP是正方形,∴NF=ON=ND,∴△DNF是等腰直角三角形,∴圖中的三角形都是等腰直角三角形;故①正確,∵PESKIPIF1<0BM,PE=BM,∴四邊形MPEB是平行四邊形,∵BE=SKIPIF1<0BC,BM=SKIPIF1<0OB,在Rt△OBC中,BC>OB,∴BE≠BM,∴四邊形MPEB不是菱形;故②錯(cuò)誤,∵PC=PO=PF=OM,∠MOP=∠CPF=90°,∴△MOP≌△CPF(SAS),∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故③正確,故選:C正方形的證明方法(四種)(1)先證明四邊形ABCD為平行四邊形,再證明平行四邊形ABCD的一個(gè)角為直角且有一組鄰邊相等.(2)先證明四邊形ABCD為平行四邊形,再證明平行四邊形ABCD的對(duì)角線互相垂直且相等.(3)先證明四邊形ABCD為矩形,再證明矩形ABCD的一組鄰邊相等(或?qū)蔷€互相垂直).(4)先證明四邊形ABCD為菱形,再證明菱形ABCD的一個(gè)角為直角(或?qū)蔷€相等).正方形的性質(zhì)(四種)(1)正方形的四條邊相等,對(duì)角線相等且互相平分;(2)正方形的面積等于對(duì)角線乘積的一半;(3)正方形既具有矩形的全部性質(zhì),又具有菱形的全部性質(zhì).1.(2022·重慶)如圖,在正方形SKIPIF1<0中,對(duì)角線SKIPIF1<0、SKIPIF1<0相交于點(diǎn)O.E、F分別為SKIPIF1<0、SKIPIF1<0上一點(diǎn),且SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的度數(shù)為(
)A.50° B.55° C.65° D.70°【答案】C【分析】根據(jù)正方形的性質(zhì)證明△AOF≌△BOE(SAS),得到∠OBE=∠OAF,利用OE=OF,∠EOF=90°,求出∠OEF=∠OFE=45°,由此得到∠OAF=∠OEF-∠AFE=20°,進(jìn)而得到∠CBE的度數(shù).【詳解】解:在正方形SKIPIF1<0中,AO=BO,∠AOD=∠AOB=90°,∠CBO=45°,∵SKIPIF1<0,∴△AOF≌△BOE(SAS),∴∠OBE=∠OAF,∵OE=OF,∠EOF=90°,∴∠OEF=∠OFE=45°,∵SKIPIF1<0,∴∠OAF=∠OEF-∠AFE=20°,∴∠CBE=∠CBO+∠OBE=45°+20°=65°,故選:C.2.(2021·廣西河池·中考真題)如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E,F(xiàn)分別在CD,AC上,SKIPIF1<0,SKIPIF1<0,則AF的長(zhǎng)是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】過(guò)SKIPIF1<0作SKIPIF1<0的垂線分別交SKIPIF1<0于SKIPIF1<0,由SKIPIF1<0,證明SKIPIF1<0,設(shè)SKIPIF1<0,根據(jù)SKIPIF1<0,求得SKIPIF1<0,在SKIPIF1<0中,利用勾股定理即可求得SKIPIF1<0.【解析】如圖,過(guò)SKIPIF1<0作SKIPIF1<0的垂線分別交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0(AAS),SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選B3.(2021·四川遂寧市·中考真題)如圖,正方形ABCD中,點(diǎn)E是CD邊上一點(diǎn),連結(jié)BE,以BE為對(duì)角線作正方形BGEF,邊EF與正方形ABCD的對(duì)角線BD相交于點(diǎn)H,連結(jié)AF,有以下五個(gè)結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤若SKIPIF1<0,則SKIPIF1<0,你認(rèn)為其中正確是_____(填寫(xiě)序號(hào))【答案】①②③④【分析】①四邊形BGEF和四邊形ABCD均為正方形,BD,BE是對(duì)角線,得∠ABD=∠FBE=45°,根據(jù)等式的基本性質(zhì)確定出SKIPIF1<0;②再根據(jù)正方形的對(duì)角線等于邊長(zhǎng)的SKIPIF1<0倍,得到兩邊對(duì)應(yīng)成比例,再根據(jù)角度的相減得到夾角相等,利用兩邊成比例且?jiàn)A角相等的兩個(gè)三角形相似即可判斷;④根據(jù)兩角相等的兩個(gè)三角形相似得到△EBH∽△DBE,從而得到比例式,根據(jù)BE=SKIPIF1<0BG,代換即可作出判斷;③由相似三角形對(duì)應(yīng)角相等得到∠BAF=∠BDE=45°,可得出AF在正方形ABCD對(duì)角線上,根據(jù)正方形對(duì)角線垂直即可作出判斷.⑤設(shè)CE=x,DE=3x,則BC=CD=4x,結(jié)合BE2=BH?BD,求出BH,DH,即可判斷.【詳解】解:①∵四邊形BGEF和四邊形ABCD均為正方形,BD,BE是對(duì)角線,∴∠ABD=∠FBE=45°,又∵∠ABF=45°?∠DBF,∠DBE=45°?∠DBF,∴SKIPIF1<0,∴選項(xiàng)①正確;②∵四邊形BGEF和四邊形ABCD均為正方形,∴AD=AB,BF=BE,∴BD=SKIPIF1<0AB,BE=SKIPIF1<0BF,∴SKIPIF1<0又∵SKIPIF1<0,∴SKIPIF1<0,∴選項(xiàng)②正確;④∵四邊形BGEF和四邊形ABCD均為正方形,BD,BE是對(duì)角線,∴∠BEH=∠BDE=45°,又∵∠EBH=∠DBE,∴△EBH∽△DBE,∴SKIPIF1<0,即BE2=BH?BD,又∵BE=SKIPIF1<0BG,∴SKIPIF1<0,∴選項(xiàng)④確;③由②知:SKIPIF1<0,又∵四邊形ABCD為正方形,BD為對(duì)角線,∴∠BAF=∠BDE=45°,∴AF在正方形另外一條對(duì)角線上,∴AF⊥BD,∴③正確,⑤∵SKIPIF1<0,∴設(shè)CE=x,DE=3x,則BC=CD=4x,∴BE=SKIPIF1<0,SKIPIF1<0∵BE2=BH?BD,∴SKIPIF1<0,∴DH=BD-BH=SKIPIF1<0,∴SKIPIF1<0,故⑤錯(cuò)誤,綜上所述:①②③④正確,故答案是:①②③④.4.(2022·四川達(dá)州)如圖,在邊長(zhǎng)為2的正方形SKIPIF1<0中,點(diǎn)E,F(xiàn)分別為SKIPIF1<0,SKIPIF1<0邊上的動(dòng)點(diǎn)(不與端點(diǎn)重合),連接SKIPIF1<0,SKIPIF1<0,分別交對(duì)角線SKIPIF1<0于點(diǎn)P,Q.點(diǎn)E,F(xiàn)在運(yùn)動(dòng)過(guò)程中,始終保持SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.以下結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0為等腰直角三角形;⑤若過(guò)點(diǎn)B作SKIPIF1<0,垂足為H,連接SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0.其中所有正確結(jié)論的序號(hào)是____.【答案】①②④⑤【分析】連接BD,延長(zhǎng)DA到M,使AM=CF,連接BM,根據(jù)正方形的性質(zhì)及線段垂直平分線的性質(zhì)定理即可判斷①正確;通過(guò)證明SKIPIF1<0,SKIPIF1<0,可證明②正確;作SKIPIF1<0,交AC的延長(zhǎng)線于K,在BK上截取BN=BP,連接CN,通過(guò)證明SKIPIF1<0,可判斷③錯(cuò)誤;通過(guò)證明SKIPIF1<0,SKIPIF1<0,利用相似三角形的性質(zhì)即可證明④正確;當(dāng)點(diǎn)B、H、D三點(diǎn)共線時(shí),DH的值最小,分別求解即可判斷⑤正確.【詳解】如圖1,連接BD,延長(zhǎng)DA到M,使AM=CF,連接BM,SKIPIF1<0四邊形ABCD是正方形,SKIPIF1<0垂直平分BD,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故①正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故②正確;如圖2,作SKIPIF1<0,交AC的延長(zhǎng)線于K,在BK上截取BN=BP,連接CN,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故③錯(cuò)誤;如圖1,SKIPIF1<0四邊形ABCD是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0為等腰直角三角形,故④正確;如圖1,當(dāng)點(diǎn)B、H、D三點(diǎn)共線時(shí),DH的值最小,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故⑤正確;故答案為:①②④⑤.5.(2022·山東泰安)如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=SKIPIF1<0.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為SKIPIF1<0;③EB⊥ED;④S△APD+S△APB=1+SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金屬屋面工協(xié)作任務(wù)配合度考核試卷及答案
- 船舶電訊工整改落實(shí)情況考核試卷及答案
- 起重機(jī)械裝配調(diào)試工項(xiàng)目進(jìn)度管控考核試卷及答案
- 2025湖南湘江愛(ài)樂(lè)樂(lè)團(tuán)招聘考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(歷年真題)
- 2025年城市熱力供應(yīng)合同(GF-1999-0503)管理協(xié)議
- P259-生命科學(xué)試劑-MCE
- O-Succinylbenzoyl-CoA-O-Succinylbenzoyl-coenzyme-A-生命科學(xué)試劑-MCE
- 2025湖南張家界市人力資源和社會(huì)保障局招聘公益性崗位人員2人考前自測(cè)高頻考點(diǎn)模擬試題及1套參考答案詳解
- 2025昆明海貝中學(xué)部春季教師招聘模擬試卷帶答案詳解
- 2025年中醫(yī)肛腸科常見(jiàn)病中醫(yī)診斷技巧沖刺押題卷
- 《房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)》解讀
- 金華蘭溪市衛(wèi)生健康局所屬事業(yè)單位招聘筆試真題2024
- 國(guó)務(wù)院便民服務(wù)管理辦法
- 胸痛的護(hù)理教學(xué)課件
- 《中國(guó)高血壓防治指南(2024年修訂版)》解讀課件
- DIEP乳房重建術(shù)后的護(hù)理指南
- GB/T 17643-2025土工合成材料聚乙烯土工膜
- 藝術(shù)漆涂料施工合同協(xié)議
- 陳皮種植轉(zhuǎn)讓合同協(xié)議
- 小學(xué)科學(xué)教科版六年級(jí)上冊(cè)全冊(cè)教案(共28課)2021年
- 預(yù)防青少年藥物濫用-主題班會(huì)課件
評(píng)論
0/150
提交評(píng)論