




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年西藏民族大學(xué)附屬中學(xué)高三3月起點調(diào)研數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則()A. B. C.1 D.22.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.3.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.5.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20176.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.637.在直角坐標(biāo)平面上,點的坐標(biāo)滿足方程,點的坐標(biāo)滿足方程則的取值范圍是()A. B. C. D.8.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.9.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.10.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達(dá)處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達(dá)處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.11.德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.12.設(shè)則以線段為直徑的圓的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,曲線上任意一點到直線的距離的最小值為________.14.已知F為雙曲線的右焦點,過F作C的漸近線的垂線FD,D為垂足,且(O為坐標(biāo)原點),則C的離心率為________.15.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)16.若的展開式中只有第六項的二項式系數(shù)最大,則展開式中各項的系數(shù)和是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內(nèi)有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.18.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.19.(12分)設(shè)數(shù)列的前列項和為,已知.(1)求數(shù)列的通項公式;(2)求證:.20.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.21.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)向量垂直的坐標(biāo)表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A本小題主要考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.2.D【解析】
先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D本題主要考查三視圖的應(yīng)用,還考查了空間想象和運算求解的能力,屬于中檔題.3.A【解析】
計算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.本題考查了復(fù)數(shù)的計算,意在考查學(xué)生的計算能力和理解能力.4.B【解析】
根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.5.D【解析】
依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.6.B【解析】
根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.7.B【解析】
由點的坐標(biāo)滿足方程,可得在圓上,由坐標(biāo)滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【詳解】點的坐標(biāo)滿足方程,在圓上,在坐標(biāo)滿足方程,在圓上,則作出兩圓的圖象如圖,設(shè)兩圓內(nèi)公切線為與,由圖可知,設(shè)兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形結(jié)合思想的應(yīng)用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關(guān)鍵是運用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.8.B【解析】
選B.考點:圓心坐標(biāo)9.B【解析】
根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設(shè),則,所以,所以.又因為,當(dāng)且僅當(dāng),即時等號成立,所以.故選:B.本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長為,用建立體積與邊長的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.10.B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.11.B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認(rèn)真審題,逐次計算,得到程序框圖的計算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.12.A【解析】
計算的中點坐標(biāo)為,圓半徑為,得到圓方程.【詳解】的中點坐標(biāo)為:,圓半徑為,圓方程為.故選:.本題考查了圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標(biāo),再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點的切線與直線平行,則,解得,當(dāng)時,到直線的距離;當(dāng)時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.本題考查曲線上一點到直線距離最小值的計算,可轉(zhuǎn)化為利用切線與直線平行來找出切點,轉(zhuǎn)化為切點到直線的距離,也可以設(shè)曲線上的動點坐標(biāo),利用基本不等式法或函數(shù)的最值進行求解,考查分析問題和解決問題的能力,屬于中等題.14.2【解析】
求出焦點到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.本題考查求雙曲線的離心率,解題關(guān)鍵是求出焦點到漸近線的距離,從而得出一個關(guān)于的等式.15.【解析】
根據(jù)組合的知識,結(jié)合組合數(shù)的公式,可得結(jié)果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數(shù)為:故答案為:本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質(zhì)上每個因式中各取一項的乘積,轉(zhuǎn)化為組合的知識,屬中檔題.16.【解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數(shù)和.【詳解】由的展開式中只有第六項的二項式系數(shù)最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數(shù)和是:.故答案為:1.本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數(shù)和的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(2)解:由題,因為函數(shù)在定義域內(nèi)有局部對稱點所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得本題考查函數(shù)的局部對稱點的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運算能力.18.(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識記公式,屬中檔題.19.(1)(2)證明見解析【解析】
(1)由已知可得,構(gòu)造等比數(shù)列即可求出通項公式;(2)當(dāng)時,由,可求,時,由,可證,驗證時,不等式也成立,即可得證.【詳解】(1)由可得,,即,所以,解得,(2)當(dāng)時,,,當(dāng)時,,綜上,由可得遞增,,時;所以,綜上:故.本題主要考查了遞推數(shù)列求通項公式,利用放縮法證明不等式,涉及等比數(shù)列的求和公式,屬于難題.20..【解析】
根據(jù)特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎(chǔ)題.21.(1).(2).【解析】
(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設(shè),0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年配電開關(guān)控制設(shè)備行業(yè)當(dāng)前市場規(guī)模及未來五到十年發(fā)展趨勢報告
- 2025年事業(yè)單位工勤技能-河南-河南環(huán)境監(jiān)測工三級(高級工)歷年參考題庫含答案解析(5套)
- 2025年事業(yè)單位工勤技能-河南-河南放射技術(shù)員二級(技師)歷年參考題庫含答案解析(5套)
- 2025年水利與港口工程建筑行業(yè)當(dāng)前發(fā)展現(xiàn)狀及增長策略研究報告
- 2025年嬰幼兒洗護用品行業(yè)當(dāng)前發(fā)展趨勢與投資機遇洞察報告
- 2025年事業(yè)單位工勤技能-廣西-廣西水土保持工一級(高級技師)歷年參考題庫含答案解析(5套)
- 2025年醫(yī)療廢棄物處理行業(yè)當(dāng)前市場規(guī)模及未來五到十年發(fā)展趨勢報告
- 2025年林業(yè)碳匯行業(yè)當(dāng)前競爭格局與未來發(fā)展趨勢分析報告
- 2025年事業(yè)單位工勤技能-廣西-廣西保安員五級(初級工)歷年參考題庫含答案解析(5套)
- 2025年事業(yè)單位工勤技能-廣西-廣西醫(yī)技工二級(技師)歷年參考題庫含答案解析(5套)
- 2025年靜寧縣城區(qū)學(xué)校選調(diào)教師考試筆試試卷【附答案】
- 2025年江蘇省蘇豪控股集團有限公司校園招聘筆試備考試題及答案詳解(必刷)
- (完整)中小學(xué)“學(xué)憲法、講憲法”知識競賽題庫及答案
- 2025年行政執(zhí)法人員執(zhí)法證考試必考多選題庫及答案(共300題)
- 2024年自投光伏安裝合同范本
- 乳制品配送服務(wù)應(yīng)急處理方案
- 健康飲食 科學(xué)防癌
- 職業(yè)病危害告知書
- 陜西延長石油靖邊煤業(yè)有限公司海測灘煤礦礦山地質(zhì)環(huán)境保護與土地復(fù)墾方案
- 2023年3月河北省普通高中學(xué)業(yè)水平合格性考試模擬(一)數(shù)學(xué)試題(解析版)
- 塔式起重機群塔安全作業(yè)施工方案完整
評論
0/150
提交評論