




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆巴彥淖爾市重點(diǎn)中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某市電視臺(tái)為調(diào)查節(jié)目收視率,想從全市3個(gè)縣按人口數(shù)用分層抽樣的方法抽取一個(gè)容量為的樣本,已知3個(gè)縣人口數(shù)之比為,如果人口最多的一個(gè)縣抽出60人,那么這個(gè)樣本的容量等于()A.96 B.120 C.180 D.2402.在數(shù)列中,,且數(shù)列是等比數(shù)列,其公比,則數(shù)列的最大項(xiàng)等于()A. B. C.或 D.3.若是異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交4.已知等差數(shù)列中,若,則取最小值時(shí)的()A.9 B.8 C.7 D.65.已知角A滿足,則的值為()A. B. C. D.6.在△ABC中,,則△ABC為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形7.在中,內(nèi)角,,所對(duì)的邊分別為,,.若的面積為,則角=()A. B.C. D.8.在面積為S的平行四邊形ABCD內(nèi)任取一點(diǎn)P,則三角形PBD的面積大于的概率為()A. B. C. D.9.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.12 B.18C.24 D.3010.已知?jiǎng)t的最小值是()A. B.4 C. D.5二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小值為_(kāi)___________.12.如圖,為內(nèi)一點(diǎn),且,延長(zhǎng)交于點(diǎn),若,則實(shí)數(shù)的值為_(kāi)______.13.已知等差數(shù)列中,首項(xiàng),公差,前項(xiàng)和,則使有最小值的_________.14.已知,,若,則______.15.已知數(shù)列是正項(xiàng)數(shù)列,是數(shù)列的前項(xiàng)和,且滿足.若,是數(shù)列的前項(xiàng)和,則_______.16.設(shè),則函數(shù)是__________函數(shù)(奇偶性).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點(diǎn).(1)證明:;(2)若為上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值.18.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大小.19.已知的三個(gè)內(nèi)角、、的對(duì)邊分別是、、,的面積,(Ⅰ)求角;(Ⅱ)若中,邊上的高,求的值.20.本題共3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.已知數(shù)列滿足.(1)若,求的取值范圍;(2)若是公比為等比數(shù)列,,求的取值范圍;(3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時(shí)相應(yīng)數(shù)列的公差.21.如圖,在平面直角坐標(biāo)系xoy中,銳角和鈍角的終邊分別與單位圓交于A,B兩點(diǎn).(1)若點(diǎn)A的縱坐標(biāo)是點(diǎn)B的縱坐標(biāo)是,求的值;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
根據(jù)分層抽樣的性質(zhì),直接列式求解即可.【詳解】因?yàn)?個(gè)縣人口數(shù)之比為,而人口最多的一個(gè)縣抽出60人,則根據(jù)分層抽樣的性質(zhì),有,故選:B.【點(diǎn)睛】本題考查分層抽樣,解題關(guān)鍵是明確分層抽樣是按比例進(jìn)行抽樣.2、C【解析】
在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,利用等比數(shù)列的通項(xiàng)公式可得:.可得,利用二次函數(shù)的單調(diào)性即可得出.【詳解】在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,.,.由或8時(shí),,或9時(shí),,數(shù)列的最大項(xiàng)等于或.故選:C.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式、累乘法、二次函數(shù)的單調(diào)性,考查推理能力與計(jì)算能力,屬于中檔題.3、D【解析】
若為異面直線,且直線,則與可能相交,也可能異面,但是與不能平行,若,則,與已知矛盾,選項(xiàng)、、不正確故選.4、C【解析】
是等差數(shù)列,先根據(jù)已知求出首項(xiàng)和公差,再表示出,由的最小值確定n?!驹斀狻坑深}得,,解得,那么,當(dāng)n=7時(shí),取到最小值-49.故選:C【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和,是基礎(chǔ)題。5、A【解析】
將等式兩邊平方,利用二倍角公式可得出的值.【詳解】,在該等式兩邊平方得,即,解得,故選A.【點(diǎn)睛】本題考查同角三角函數(shù)的基本關(guān)系,考查二倍角正弦公式的應(yīng)用,一般地,解三角函數(shù)有關(guān)問(wèn)題時(shí),遇到,常用平方法來(lái)求解,考查計(jì)算能力,屬于中等題.6、C【解析】
直接利用正弦定理余弦定理化簡(jiǎn)得到,即得解.【詳解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案為:C【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理水平.7、C【解析】
由三角形面積公式,結(jié)合所給條件式及余弦定理,即可求得角A.【詳解】中,內(nèi)角,,所對(duì)的邊分別為,,則由余弦定理可知而由題意可知,代入可得所以化簡(jiǎn)可得因?yàn)樗怨蔬x:C【點(diǎn)睛】本題考查了三角形面積公式的應(yīng)用,余弦定理邊角轉(zhuǎn)化的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】
轉(zhuǎn)化條件求出滿足要求的P點(diǎn)的范圍,求出面積比即可得解.【詳解】如圖,設(shè)P到BD距離為h,A到BD距離為H,則,,滿足條件的點(diǎn)在和中,所求概率.故選:A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算,屬于基礎(chǔ)題.9、C【解析】試題分析:由三視圖可知,幾何體是三棱柱消去一個(gè)同底的三棱錐,如圖所示,三棱柱的高為5,消去的三棱錐的高為3,三棱錐與三棱柱的底面為直角邊長(zhǎng)分別為3和4的直角三角形,所以幾何體的體積為V=1考點(diǎn):幾何體的三視圖及體積的計(jì)算.【方法點(diǎn)晴】本題主要考查了幾何體的三視圖的應(yīng)用及體積的計(jì)算,著重考查了推理和運(yùn)算能力及空間想象能力,屬于中檔試題,解答此類問(wèn)題的關(guān)鍵是根據(jù)三視圖的規(guī)則“長(zhǎng)對(duì)正、寬相等、高平齊”的原則,還原出原幾何體的形狀,本題的解答的難點(diǎn)在于根據(jù)幾何體的三視圖還原出原幾何體和幾何體的度量關(guān)系,屬于中檔試題.10、C【解析】
由題意結(jié)合均值不等式的結(jié)論即可求得的最小值,注意等號(hào)成立的條件.【詳解】由題意可得:,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.即的最小值是.故選:C.【點(diǎn)睛】在應(yīng)用基本不等式求最值時(shí),要把握不等式成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”,若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將函數(shù)構(gòu)造成的形式,用換元法令,在定義域上根據(jù)新函數(shù)的單調(diào)性求函數(shù)最小值,之后可得原函數(shù)最小值?!驹斀狻坑深}得,,令,則函數(shù)在遞增,可得的最小值為,則的最小值為.故答案為:【點(diǎn)睛】本題考查了換元法,以及函數(shù)的單調(diào)性,是基礎(chǔ)題。12、【解析】
由,得,可得出,再利用、、三點(diǎn)共線的向量結(jié)論得出,可解出實(shí)數(shù)的值.【詳解】由,得,可得出,由于、、三點(diǎn)共線,,解得,故答案為.【點(diǎn)睛】本題考查三點(diǎn)共線問(wèn)題的處理,解題的關(guān)鍵就是利用三點(diǎn)共線的向量等價(jià)條件的應(yīng)用,考查運(yùn)算求解的能力,屬于中等題.13、或【解析】
求出,然后利用,求出的取值范圍,即可得出使得有最小值的的值.【詳解】,令,解得.因此,當(dāng)或時(shí),取得最小值.故答案為:或.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和的最小值求解,可以利用二次函數(shù)性質(zhì)求前項(xiàng)和的最小值,也可以轉(zhuǎn)化為數(shù)列所有非正數(shù)項(xiàng)相加,考查計(jì)算能力,屬于中等題.14、【解析】
首先令,分別把解出來(lái),再利用整體換元的思想即可解決.【詳解】令所以令,所以所以【點(diǎn)睛】本題主要考查了整體換元的思想以及對(duì)數(shù)之間的運(yùn)算和公式法解一元二次方程.整體換元的思想是高中的一個(gè)重點(diǎn),也是高考??嫉膬?nèi)容需重點(diǎn)掌握.15、【解析】
利用將變?yōu)椋戆l(fā)現(xiàn)數(shù)列{}為等差數(shù)列,求出,進(jìn)一步可以求出,再將,代入,發(fā)現(xiàn)可以裂項(xiàng)求的前99項(xiàng)和。【詳解】當(dāng)時(shí),符合,當(dāng)時(shí),符合,【點(diǎn)睛】一般公式的使用是將變?yōu)?,而本題是將變?yōu)椋o后面的整理帶來(lái)方便。先求,再求,再求,一切都順其自然。16、偶【解析】
利用誘導(dǎo)公式將函數(shù)的解析式進(jìn)行化簡(jiǎn),即可判斷出函數(shù)的奇偶性.【詳解】,因此,函數(shù)為偶函數(shù).故答案為:偶.【點(diǎn)睛】本題考查三角函數(shù)奇偶性的判斷,解題的關(guān)鍵就是利用誘導(dǎo)公式對(duì)三角函數(shù)解析式進(jìn)行化簡(jiǎn),考查分析問(wèn)題和解決問(wèn)題的能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)證明,利用平面即可證得,問(wèn)題得證.(2)過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),連接.當(dāng)與垂直時(shí),與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個(gè)平面角,解即可.【詳解】(1)因?yàn)榈酌鏋榱庑?,所以為等邊三角形,又為中點(diǎn)所以,又所以因?yàn)槠矫?,平面所以,又所以平面?)過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),連接當(dāng)與垂直時(shí),與平面所成最大角.由(1)得,此時(shí).所以就是與平面所成的角.在中,由題意可得:,又所以.設(shè),在中由等面積法得:解得:,所以因?yàn)槠矫?,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個(gè)平面角因?yàn)闉榈闹悬c(diǎn),且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值為【點(diǎn)睛】本題主要考查了線面垂直的證明,考查了轉(zhuǎn)化能力,還考查了線面角知識(shí),考查了二面角的平面角作法,考查空間思維能力及解三角形,考查了方程思想及計(jì)算能力,屬于難題.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)通過(guò)正弦定理易得,代入即可.(Ⅱ)三邊長(zhǎng)知道通過(guò)余弦定理即可求得的大?。驹斀狻浚á瘢┮?yàn)?,所以由正弦定理可得.因?yàn)椋裕á颍┯捎嘞叶ɡ恚驗(yàn)槿切蝺?nèi)角,所以.【點(diǎn)睛】此題考查正弦定理和余弦定理,記住公式很容易求解,屬于簡(jiǎn)單題目.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由面積公式推出,代入所給等式可得,求出角C的余弦值從而求得角C;(Ⅱ)首先由求出邊c,再由面積公式代入相應(yīng)值求出邊b,利用余弦定理即可求出邊a.【詳解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,將代入中得,解得.【點(diǎn)睛】本題考查余弦定理解三角形,三角形面積公式,屬于基礎(chǔ)題.20、(1);(2);(3)的最大值為1999,此時(shí)公差為.【解析】
(1)依題意:,又將已知代入求出x的范圍;(2)先求出通項(xiàng):,由求出,對(duì)q分類討論求出Sn分別代入不等式Sn≤Sn+1≤3Sn,得到關(guān)于q的不等式組,解不等式組求出q的范圍.(3)依題意得到關(guān)于k的不等式,得出k的最大值,并得出k取最大值時(shí)a1,a2,…ak的公差.【詳解】(1)依題意:,∴;又∴3≤x≤27,綜上可得:3≤x≤6(2)由已知得,,,∴,當(dāng)q=1時(shí),Sn=n,Sn≤Sn+1≤3Sn,即,成立.當(dāng)1<q≤3時(shí),,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而對(duì)于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又當(dāng)1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,當(dāng)時(shí),,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴時(shí),不等式恒成立,∴q的取值范圍為:.(3)設(shè)a1,a2,…ak的公差為d.由,且a1=1,得即當(dāng)n=1時(shí),d≤2;當(dāng)n=2,3,…,k﹣1時(shí),由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 4504:2025 EN Plastics - Polyethylene (PE) - Determination of co-monomer content by solution state 13C-NMR spectrometry
- 【正版授權(quán)】 ISO 5461:2025 EN Space systems - Failure reporting,analysis and corrective action (FRACA) process requirements
- 【正版授權(quán)】 ISO 17987-3:2025 EN Road vehicles - Local Interconnect Network (LIN) - Part 3: Protocol specification
- 校本培訓(xùn)經(jīng)驗(yàn)課件
- 校外培訓(xùn)機(jī)構(gòu)安全知識(shí)培訓(xùn)課件
- 導(dǎo)數(shù)考試題型及答案
- 鹽業(yè)局的考試試題及答案
- 北京音樂(lè)知識(shí)培訓(xùn)課件
- 醫(yī)藥耗材面試題及答案
- 技師磨工考試題及答案
- 吉安市新廬陵投資發(fā)展有限公司及下屬子公司2025年第二批面向社會(huì)公開(kāi)招聘筆試備考題庫(kù)及答案解析
- 2025至2030年中國(guó)生長(zhǎng)激素行業(yè)市場(chǎng)深度研究及投資戰(zhàn)略規(guī)劃報(bào)告
- 大疆:2025大疆機(jī)場(chǎng)3操作指導(dǎo)書(shū)
- 2025年衛(wèi)生健康行業(yè)經(jīng)濟(jì)管理領(lǐng)軍人才試題
- hiv職業(yè)暴露培訓(xùn)課件
- 2025年重慶市高考物理試卷(含答案解析)
- 小番茄栽培技術(shù)課件
- (高清版)DB22∕T 5159-2024 預(yù)應(yīng)力混凝土樁基礎(chǔ)技術(shù)標(biāo)準(zhǔn)
- 2024年中級(jí)統(tǒng)計(jì)師《統(tǒng)計(jì)工作實(shí)務(wù)》真題及答案解析
- 小學(xué)2024-2025學(xué)年度第二學(xué)期道德與法治課程計(jì)劃
- 河北省唐山市路北區(qū)2025屆八年級(jí)數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析
評(píng)論
0/150
提交評(píng)論