2024屆江西高安中學數(shù)學高一下期末學業(yè)水平測試試題含解析_第1頁
2024屆江西高安中學數(shù)學高一下期末學業(yè)水平測試試題含解析_第2頁
2024屆江西高安中學數(shù)學高一下期末學業(yè)水平測試試題含解析_第3頁
2024屆江西高安中學數(shù)學高一下期末學業(yè)水平測試試題含解析_第4頁
2024屆江西高安中學數(shù)學高一下期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江西高安中學數(shù)學高一下期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在直角中,,線段上有一點,線段上有一點,且,若,則()A.1 B. C. D.2.一只小狗在圖所示的方磚上走來走去,最終停在涂色方磚的概率為()A. B. C. D.3.已知的三個內(nèi)角之比為,那么對應(yīng)的三邊之比等于()A. B. C. D.4.設(shè),則A.-1 B.1 C.ln2 D.-ln25.設(shè)數(shù)列滿足,且,則數(shù)列中的最大項為()A. B. C. D.6.已知等差數(shù)列前n項的和為,,,則()A.25 B.26 C.27 D.287.若長方體三個面的面積分別為2,3,6,則此長方體的外接球的表面積等于()A. B. C. D.8.設(shè)函數(shù)是定義在上的奇函數(shù),當時,,則()A.-4 B. C. D.9.已知,若關(guān)于x的不等式的解集為,則()A. B. C.1 D.710.袋中有個大小相同的小球,其中個白球,個紅球,個黑球,現(xiàn)在從中任意取一個,則取出的球恰好是紅色或者黑色小球的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知與的夾角為求=_____.12.已知與之間的一組數(shù)據(jù),則與的線性回歸方程必過點__________.13.若數(shù)列的前項和為,則該數(shù)列的通項公式為______.14.某單位為了了解用電量度與氣溫之間的關(guān)系,隨機統(tǒng)計了某天的用電量與當天氣溫.氣溫(℃)141286用電量(度)22263438由表中數(shù)據(jù)得回歸直線方程中,據(jù)此預測當氣溫為5℃時,用電量的度數(shù)約為____.15.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)16.已知函數(shù)的定義域為,則實數(shù)的取值范圍為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓:和點,,,.(1)若點是圓上任意一點,求;(2)過圓上任意一點與點的直線,交圓于另一點,連接,,求證:.18.在中,角A,B,C的對邊分別是a,b,c,.(1)求角A的大小;(2)若,,求的面積.19.如圖,在四邊形ABCD中,,,已知,.(1)求的值;(2)若,且,求BC的長.20.如圖,四棱錐中,底面為平行四邊形,,,底面.(1)證明:;(2)設(shè),求點到面的距離.21.已知離心率為的橢圓過點.(1)求橢圓的方程;(2)過點作斜率為直線與橢圓相交于兩點,求的長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

依照題意采用解析法,建系求出目標向量坐標,用數(shù)量積的坐標表示即可求出結(jié)果.【詳解】如圖,以A為原點,AC,AB所在直線分別為軸建系,依題設(shè)A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故選D.【點睛】本題主要考查解析法在向量中的應(yīng)用,意在考查學生數(shù)形結(jié)合的能力.2、C【解析】

方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可計算出所求事件的概率.【詳解】由圖形可知,方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可知,小狗最終停在涂色方磚的概率為,故選:C.【點睛】本題考查利用幾何概型概率公式計算事件的概率,解題時要理解事件的基本類型,正確選擇古典概型和幾何概型概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.3、D【解析】∵已知△ABC的三個內(nèi)角之比為,∴有,再由,可得,故三內(nèi)角分別為.再由正弦定理可得三邊之比,故答案為點睛:本題考查正弦定理的應(yīng)用,結(jié)合三角形內(nèi)角和等于,很容易得出三個角的大小,利用正弦定理即出結(jié)果4、C【解析】

先把化為,再根據(jù)公式和求解.【詳解】故選C.【點睛】本題考查對數(shù)、指數(shù)的運算,注意觀察題目之間的聯(lián)系.5、A【解析】

利用累加法求得的通項公式,再根據(jù)的單調(diào)性求得最大項.【詳解】因為故故則,其最大項是的最小項的倒數(shù),又,當且僅當或時,取得最小值7.故得最大項為.故選:A.【點睛】本題考查由累加法求數(shù)列的通項公式,以及數(shù)列的單調(diào)性,屬綜合基礎(chǔ)題.6、C【解析】

根據(jù)等差數(shù)列的求和與通項性質(zhì)求解即可.【詳解】等差數(shù)列前n項的和為,故.故.故選:C【點睛】本題主要考查了等差數(shù)列通項與求和的性質(zhì)運用,屬于基礎(chǔ)題.7、C【解析】

設(shè)長方體過一個頂點的三條棱長分別為,,,由已知面積求得,,的值,得到長方體對角線長,進一步得到外接球的半徑,則答案可求.【詳解】設(shè)長方體過一個頂點的三條棱長分別為,,,則,解得,,.長方體的對角線長為.則長方體的外接球的半徑為,此長方體的外接球的表面積等于.故選:C.【點睛】本題考查長方體外接球表面積的求法,考查空間想象能力和運算求解能力,求解時注意長方體的對角線長為長方體外接球的直徑.8、A【解析】

由奇函數(shù)的性質(zhì)可得:即可求出【詳解】因為是定義在上的奇函數(shù),所以又因為當時,,所以,所以,選A.【點睛】本題主要考查了函數(shù)的性質(zhì)中的奇偶性。其中奇函數(shù)主要有以下幾點性質(zhì):1、圖形關(guān)于原點對稱。2、在定義域上滿足。3、若定義域包含0,一定有。9、B【解析】

由韋達定理列方程求出,即可得解.【詳解】由已知及韋達定理可得,,,即,,所以.故選:.【點睛】本題考查一元二次方程和一元二次不等式的關(guān)系、韋達定理的應(yīng)用等,屬于一般基礎(chǔ)題.10、D【解析】

利用古典概型的概率公式可計算出所求事件的概率.【詳解】從袋中個球中任取一個球,取出的球恰好是一個紅色或黑色小球的基本事件數(shù)為,因此,取出的球恰好是紅色或者黑色小球的概率為,故選D.【點睛】本題考查古典概型概率的計算,解題時要確定出全部基本事件數(shù)和所求事件所包含的基本事件數(shù),并利用古典概型的概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由題意可得:,結(jié)合向量的運算法則和向量模的計算公式可得的值.【詳解】由題意可得:,則:.【點睛】本題主要考查向量模的求解,向量的運算法則等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.12、【解析】

根據(jù)線性回歸方程一定過樣本中心點,計算這組數(shù)據(jù)的樣本中心點,求出和的平均數(shù)即可求解.【詳解】由題意可知,與的線性回歸方程必過樣本中心點,,所以線性回歸方程必過.故答案為:【點睛】本題是一道線性回歸方程題目,需掌握線性回歸方程必過樣本中心點這一特征,屬于基礎(chǔ)題.13、【解析】

由,可得出,再令,可計算出,然后檢驗是否滿足在時的表達式,由此可得出數(shù)列的通項公式.【詳解】由題意可知,當時,;當時,.又不滿足.因此,.故答案為:.【點睛】本題考查利用求,一般利用來計算,但要對是否滿足進行檢驗,考查運算求解能力,屬于中等題.14、1【解析】

由表格得,即樣本中心點的坐標為,又因為樣本中心點在回歸方程上且,解得:,當時,,故答案為1.考點:回歸方程【名師點睛】本題考查線性回歸方程,屬容易題.兩個變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個變量之間整體關(guān)系的了解.解題時根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出的值,現(xiàn)在方程是一個確定的方程,根據(jù)所給的的值,代入線性回歸方程,預報要銷售的件數(shù).15、①③④⑤【解析】

設(shè)出幾何體的邊長,根據(jù)正六邊形的性質(zhì),線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關(guān)知識,對五個結(jié)論逐一分析,由此得出正確結(jié)論的序號.【詳解】設(shè)正六邊形長為,則.根據(jù)正六邊形的幾何性質(zhì)可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【點睛】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.16、【解析】

根據(jù)對數(shù)的真數(shù)對于0,再結(jié)合不等式即可解決.【詳解】函數(shù)的定義域為等價于對于任意的實數(shù),恒成立當時成立當時,等價于綜上可得【點睛】本題主要考查了函數(shù)的定義域以及不等式恒成立的問題,函數(shù)的定義域??嫉挠?、,2、,3、.屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2(2)見證明【解析】

(1)設(shè)點的坐標為,得出,利用兩點間的距離公式以及將關(guān)系式代入可求出的值;(2)對直線的斜率是否存在分類討論。①直線的斜率不存在時,由點、的對稱性證明結(jié)論;②直線的斜率不存在時,設(shè)直線的方程為,設(shè)點、,將直線的方程與圓的方程聯(lián)立,列出韋達定理,通過計算直線和的斜率之和為零來證明結(jié)論成立?!驹斀狻浚?)證明:設(shè),因為點是圓上任意一點,所以,所以,(2)①當直線的傾斜角為時,因為點、關(guān)于軸對稱,所以.②當直線的傾斜角不等于時,設(shè)直線的斜率為,則直線的方程為.設(shè)、,則,.,,.【點睛】本題考查直線與圓的位置關(guān)系問題,考查兩點間的距離公式、韋達定理在直線與圓的綜合問題的處理,本題的關(guān)鍵在于將角的關(guān)系轉(zhuǎn)化為斜率之間的關(guān)系來處理,另外,利用韋達定理求解直線與圓的綜合問題時,其基本步驟如下:(1)設(shè)直線的方程以及直線與圓的兩交點坐標、;(2)將直線方程與圓的方程聯(lián)立,列出韋達定理;(3)將問題對象利用代數(shù)式或等式表示,并進行化簡;(4)將韋達定理代入(3)中的代數(shù)式或等式進行化簡計算。18、(1)(2)【解析】

(1)由,結(jié)合,得到求解.(2)據(jù)(1)知.再由余弦定理求得邊,再利用求解.【詳解】(1)因為,,所以,所以,所以,或(舍去).又因為,所以.(2)由(1)知.由余弦定理得所以,即,所以(舍)或.所以的面積.【點睛】本題主要考查了余弦定理和正弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.19、(1)(2)【解析】

(1)由正弦定理可得;(2)由(1)求得,然后利用余弦定理求解.【詳解】(1)在中,由正弦定理,得,因為,,,所以;(2)由(1)可知,,因為,所以,在中,由余弦定理,得,因為,,所以,即,解得或,又,則.【點睛】本題考查正弦定理和余弦定理解三角形,掌握正弦定理和余弦定理是解題關(guān)鍵.20、(1)見解析(2)【解析】試題分析:(Ⅰ)要證明線線垂直,一般用到線面垂直的性質(zhì)定理,即先要證線面垂直,首先由已知底面.知,因此要證平面,從而只要證,這在中可證;(Ⅱ)要求點到平面的距離,可過點作平面的垂線,由(Ⅰ)的證明,可得平面,從而有平面,因此平面平面,因此只要過作于,則就是的要作的垂線,線段的長就是所要求的距離.試題解析:(Ⅰ)證明:因為,,由余弦定理得.從而,∴,又由底面,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論