北京市燕山地區(qū)市級名校2023-2024學年中考數學最后沖刺卷含解析_第1頁
北京市燕山地區(qū)市級名校2023-2024學年中考數學最后沖刺卷含解析_第2頁
北京市燕山地區(qū)市級名校2023-2024學年中考數學最后沖刺卷含解析_第3頁
北京市燕山地區(qū)市級名校2023-2024學年中考數學最后沖刺卷含解析_第4頁
北京市燕山地區(qū)市級名校2023-2024學年中考數學最后沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市燕山地區(qū)市級名校2023-2024學年中考數學最后沖刺濃縮精華卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知關于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣32.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④3.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山4.化簡:(a+)(1﹣)的結果等于()A.a﹣2 B.a+2 C. D.5.有理數a,b在數軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④6.已知關于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或7.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關系是()A.相交B.內切C.外離D.內含8.多項式4a﹣a3分解因式的結果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)29.二次函數y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(

)A.1

B.-1

C.2

D.-210.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.某商品原價100元,連續(xù)兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.12.兩個完全相同的正五邊形都有一邊在直線l上,且有一個公共頂點O,其擺放方式如圖所示,則∠AOB等于______度.13.如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是.14.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.15.如果a+b=2,那么代數式(a﹣)÷的值是______.16.如圖,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一點D,使AD=4,將線段AD繞點A按順時針方向旋轉,點D的對應點是點P,連接BP,取BP的中點F,連接CF,當點P旋轉至CA的延長線上時,CF的長是_____,在旋轉過程中,CF的最大長度是_____.三、解答題(共8題,共72分)17.(8分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)18.(8分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.19.(8分)某年級組織學生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學生報名參加夏令營的情況,請你根據圖中的信息回答下列問題:該年級報名參加丙組的人數為;該年級報名參加本次活動的總人數,并補全頻數分布直方圖;根據實際情況,需從甲組抽調部分同學到丙組,使丙組人數是甲組人數的3倍,應從甲組抽調多少名學生到丙組?20.(8分)2018年春節(jié),西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節(jié)晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。21.(8分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.22.(10分)草莓是云南多地盛產的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經試銷發(fā)現,銷售量y(千克)與銷售單價x(元)符合一次函數關系,如圖是y與x的函數關系圖象.(1)求y與x的函數關系式;(2)直接寫出自變量x的取值范圍.23.(12分)已知關于x的一元二次方程3x2﹣6x+1﹣k=0有實數根,k為負整數.求k的值;如果這個方程有兩個整數根,求出它的根.24.某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:銷售單價(元)x銷售量y(件)銷售玩具獲得利潤w(元)(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.2、D【解析】試題分析:首先要理解清楚題意,知道總的客車數量及總的人數不變,然后采用排除法進行分析從而得到正確答案.解:根據總人數列方程,應是40m+10=43m+1,①錯誤,④正確;根據客車數列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.3、A【解析】

根據兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.4、B【解析】

解:原式====.故選B.考點:分式的混合運算.5、B【解析】分析:本題是考察數軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.6、A【解析】

根據方程有兩個相等的實數根結合根的判別式即可得出關于k的方程,解之即可得出結論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數根”是解題的關鍵.7、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據圓心距與半徑之間的數量關系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關系.8、B【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.9、A【解析】試題分析:根據角拋物線頂點式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A10、B【解析】

連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,屬于中考??碱}型.二、填空題(本大題共6個小題,每小題3分,共18分)11、20%.【解析】試題分析:根據原價為100元,連續(xù)兩次漲價x后,現價為144元,根據增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應用.12、108°【解析】

如圖,易得△OCD為等腰三角形,根據正五邊形內角度數可求出∠OCD,然后求出頂角∠COD,再用360°減去∠AOC、∠BOD、∠COD即可【詳解】∵五邊形是正五邊形,∴每一個內角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案為108°【點睛】本題考查正多邊形的內角計算,分析出△OCD是等腰三角形,然后求出頂角是關鍵.13、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再結合已知條件利用SAS可證兩三角形全等;

②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,結合三角形的外角的性質,易得∠BEP=90°,即可證;

④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

,

∴△APD≌△AEB(SAS);

故此選項成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此選項成立;

②過B作BF⊥AE,交AE的延長線于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

,

∴BF=EF=

故此選項不正確;

④如圖,連接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

又∵PB=

,

∴BE=

∵△APD≌△AEB,

∴PD=BE=

,

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此選項不正確.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

,

∴S

正方形ABCD=AB

2=4+

,

故此選項正確.

故答案為①③⑤.【點睛】本題考查了全等三角形的判定和性質的運用、正方形的性質的運用、正方形和三角形的面積公式的運用、勾股定理的運用等知識.14、5或1.【解析】

先依據勾股定理求得AB的長,然后由翻折的性質可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據勾股定理列出關于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.15、2【解析】分析:根據分式的運算法則即可求出答案.詳解:當a+b=2時,原式===a+b=2故答案為:2點睛:本題考查分式的運算,解題的關鍵熟練運用分式的運算法則,本題屬于基礎題型.16、,+2.【解析】

當點P旋轉至CA的延長線上時,CP=20,BC=2,利用勾股定理求出BP,再根據直角三角形斜邊上的中線等于斜邊的一半,可得CF的長;取AB的中點M,連接MF和CM,根據直角三角形斜邊上的中線等于斜邊的一半,可得CM的長,利用三角形中位線定理,可得FM的長,再根據當且僅當M、F、C三點共線且M在線段CF上時CF最大,即可得到結論.【詳解】當點P旋轉至CA的延長線上時,如圖2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=,∵BP的中點是F,∴CF=BP=.取AB的中點M,連接MF和CM,如圖2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB=2.∵M為AB中點,∴CM=AB=,∵將線段AD繞點A按順時針方向旋轉,點D的對應點是點P,∴AP=AD=4,∵M為AB中點,F為BP中點,∴FM=AP=2.當且僅當M、F、C三點共線且M在線段CF上時CF最大,此時CF=CM+FM=+2.故答案為,+2.【點睛】考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了直角三角形斜邊上的中線等于斜邊的一半以及勾股定理.根據題意正確畫出對應圖形是解題的關鍵.三、解答題(共8題,共72分)17、(39+9)米.【解析】

過點E作EF⊥BC的延長線于F,EH⊥AB于點H,根據CE=20米,坡度為i=1:,分別求出EF、CF的長度,在Rt△AEH中求出AH,繼而可得樓房AB的高.【詳解】解:過點E作EF⊥BC的延長線于F,EH⊥AB于點H,在Rt△CEF中,∵=tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:樓房AB的高為(35+10)米.【點睛】本題考查解直角三角形的應用-仰角俯角問題;坡度坡角問題,掌握概念正確計算是本題的解題關鍵.18、證明見解析.【解析】

想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點睛】本題考查全等三角形的判定和性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.19、(1)21人;(2)10人,見解析(3)應從甲抽調1名學生到丙組【解析】(1)參加丙組的人數為21人;(2)21÷10%=10人,則乙組人數=10-21-11=10人,如圖:(3)設需從甲組抽調x名同學到丙組,根據題意得:3(11-x)=21+x解得x=1.答:應從甲抽調1名學生到丙組(1)直接根據條形統(tǒng)計圖獲得數據;(2)根據丙組的21人占總體的10%,即可計算總體人數,然后計算乙組的人數,補全統(tǒng)計圖;(3)設需從甲組抽調x名同學到丙組,根據丙組人數是甲組人數的3倍列方程求解20、(1);(2).【解析】

(1)根據概率=所求情況數與總情況數之比代入解得即可.(2)將小明吃到的前兩個元宵的所有情況列表出來即可求解.【詳解】(1)5個元宵中,五仁餡的有2個,故小明吃到的第一個元宵是五仁餡的概率是;(2)小明吃到的前兩個元宵的所有情況列表如下(記黑芝麻餡的兩個分別為、,五仁餡的兩個分別為、,桂花餡的一個為c):由圖可知,共有20種等可能的情況,其中小明吃到的前兩個元宵是同一種餡料的情況有4種,故小明吃到的前兩個元宵是同一種餡料的概率是.【點睛】本題考查的是用列表法求概率.列表法可以不重復不遺漏的列出所有可能的結果,用到的知識點為:概率=所求:情況數與總情況數之比.21、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據拋物線在坐標系的位置,可用待定系數法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.22、(1)y=-2x+31,(2)20≤x≤1【解析】試題分析:(1)根據函數圖象經過點(20,300)和點(30,280),利用待定系數法即可求出y與x的函數關系式;

(2)根據試銷期間銷售單價不低于成本單價,也不高于每千克1元,結合草莓的成本價即可得出x的取值范圍.試題解析:(1)設y與x的函數關系式為y=kx+b,根據題意,得:解得:∴y與x的函數解析式為y=-2x+31,(2)∵試銷期間銷售單價不低于成本單價,也不高于每千克1元,且草莓的成本為每千克20元,

∴自變量x的取值范圍是20≤x≤1.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論