一種基于自蒸餾的自適應(yīng)惡意流量分類(lèi)算法_第1頁(yè)
一種基于自蒸餾的自適應(yīng)惡意流量分類(lèi)算法_第2頁(yè)
一種基于自蒸餾的自適應(yīng)惡意流量分類(lèi)算法_第3頁(yè)
一種基于自蒸餾的自適應(yīng)惡意流量分類(lèi)算法_第4頁(yè)
全文預(yù)覽已結(jié)束

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一種基于自蒸餾的自適應(yīng)惡意流量分類(lèi)算法流量的增長(zhǎng)給網(wǎng)絡(luò)安全監(jiān)測(cè)和攻擊防御帶來(lái)了挑戰(zhàn),網(wǎng)絡(luò)需要開(kāi)發(fā)新的分類(lèi)方法和技術(shù)來(lái)應(yīng)對(duì)。本論文介紹了一種基于自適應(yīng)惡意流量分類(lèi)算法,該算法使用深度神經(jīng)網(wǎng)絡(luò)和自蒸餾和分類(lèi)惡意流量。我們?cè)诔R?jiàn)的數(shù)據(jù)集上進(jìn)行了實(shí)驗(yàn)驗(yàn)證,結(jié)AbstractTheproliferationofmaliciousnetworktraffichasposedchallengesfornetworksecuritymonitoringandattackdefense,andcybersecurityexpertsneedtodevelopnewclassificationmethodsandtechniquestocombatitThispaperintroducesaself-distillation-basedadaptivemalicioustrafficclassificationalgorithmthatusesdeepneuralnetworksandselfdistillationmechanismtoidentifyandclassifymalicioustraffic.Weconductedexperimentsoncommondatasets,andtheresultsshowthatthealgorithmachieveshighrecognitionandclassificationaccuracy.elfdistillationmalicioustrafficdeepneuralnetworksclassificationaccuracy.Withtheincreasingsophisticationofcyberthreats,traditionalrule-basedandsignaturebasedapproachesarenolongersufficienttoprotectnetworksfrommalicioustraffic.Malwareauthorsusesophisticatedevasiontechniquestoavoiddetectionandintrusionpreventionsystemshaveadifficulttimekeepingupwiththeadvancedtechniquestheyusetoinfectmachines.Asaresult,networksecurityexpertsmustturntomoreadvancedtechnologiestodetectandmitigaterisksposedbymalicioustraffic.hasemergedasapromisingtechnologyfordetectingandclassifyingmalicioustrafficinrecentyearsItiscapableofprocessinglargeamountsofunstructureddataandautomaticallylearningfrompatternsandfeaturesindataInaddition,deeplearningmodelscanadapttonewdatainputsovertimeandimprovetheiraccuracywithmoretrainingdataHoweverdeeplearningmodelsoftenrequirelargeamountsoflabeleddatatoachievehighaccuracy,whichisasignificantchallengeinthecontextofnetworktrafficclassificationduetothelackoflabeleddatafordifferenttypesofmalicioustraffic.Toaddressthischallenge,thispaperpresentsaself-distillation-basedadaptivemalicioustrafficclassificationalgorithmthatcanimprovetheaccuracyofdeepneuralnetworkswithlimitedlabeleddata.Specificallyweuseaself-distillationmechanismtotransferknowledgefromawelltrainedmodeltoasmallerandlesscomplexmodel,whichcanthenbeusedtoclassifymalicioustrafficwithlimitedlabeleddata.Severaltechniqueshavebeenproposedfortheclassificationofmalicioustraffic,includingmachinelearningmethodsandclusteringmethodsMachinelearningmethodsarebasedonmathematicalmodelsandlearnpatternsfromlabeleddata.Forexample,Zhangetal.[1]proposedamalwaredetectionapproachusingamulti-classsupportvectormachineChenetal.[2]proposedadeeplearningapproachformalwaredetectionusingconvolutionalneuralnetworks.Clusteringmethodsarebasedonthesimilarityofnetworktrafficflowsandaimtogroupsimilarflowsintoclusters.Forexample,Wangetal.[3]proposedamethodforclusteringnetworktrafficusingnonnegativematrixfactorization.Whilethesemethodshaveshownpromiseindetectingandclassifyingmalicioustraffictheyrequirelargeamountsoflabeleddataandarenotwell-suitedforclassifyingnewtypesofmalwareandattacks.Inadditionclusteringmethodsoftensufferfromlowaccuracyduetothedifficultyinaccuratelydefiningandclusteringnetworktrafficflows.Theproposedalgorithmisbasedonaself-distillationmechanismthatenablestransferlearningfromawell-trainedmodeltoasmallerandlesscomplexmodel.Theself-distillationprocessinvolvestrainingalargeandcomplexmodel(teachermodel)togeneratesofttargetsforasmallerandlesscomplexmodel(studentmodel)thatistrainedtomimicthebehavioroftheteachermodel.Thisprocessenablesthestudentmodeltoeffectivelylearnfromtheknowledgeandexperienceoftheteachermodel,leadingtohigheraccuracywithlesstrainingdata.TheoverallarchitectureoftheproposedalgorithmisshowninFigureThealgorithmconsistsoftwostages:teachermodeltrainingandstudentmodeltraining.Theteachermodelistrainedusingalargelabeleddatasetofnetworktrafficflowsandconsistsofmultipledeepneuralnetworksthatlearntoidentifyandclassifydifferenttypesofmalicioustraffic.Theteachermodelgeneratessofttargets(outputprobabilities)foreachinputexample,whichareusedtotrainthestudentmodel.Thestudentmodelistrainedusingthelabeleddataandthesofttargetsgeneratedbytheteachermodel.Thestudentmodelconsistsofasmallerandlesscomplexneuralnetworkthatisdesignedtomimicthebehavioroftheteachermodel.Duringtraining,thestudentmodelisoptimizedusingthecross-entropylossbetweenthestudentoutputandthesofttargetsgeneratedbytheteachermodel.OncethestudentmodelistraineditcanbeusedtoclassifynewnetworktrafficflowswithlimitedlabeleddataDuringclassification,thestudentmodelgeneratesoutputprobabilitiesthatarecomparedtoapredefinedthresholdtodeterminewhethertheflowismaliciousorbenign.onToevaluatetheperformanceoftheproposedalgorithm,weconductedexperimentsontwocommonlyuseddatasetsISCX-2012andUNSWNBBothdatasetsconsistofnetworktrafficflowslabeledaseitherbenignormalicious.datasetweuseaportionofthelabeleddatafortrainingtheteachermodelandtheremainingdatafortrainingthestudentmodelandevaluatingtheperformanceofthealgorithm.Theperformanceoftheproposedalgorithmisevaluatedusingthefollowingmetricsdetectionrate(DR),falsepositiverate(FPR),andclassificationaccuracy(CA).Table1showstheexperimentalresultsontheISCX-2012dataset.Theresultsshowthattheproposedalgorithmachieveshigherdetectionratesandclassificationaccuracythanotherstate-of-the-artmethodsusinglesslabeleddata.Table2showstheexperimentalresultsontheUNSW-NB15dataset.Again,theproposedalgorithmachieveshigherdetectionratesandclassificationaccuracythanotherstate-of-the-artmethodsusinglesslabeleddata.Theseresultsconfirmtheeffectivenessoftheproposedalgorithmtingandclassifyingmalicioustrafficwithlimitedlabeleddatagselfdistillationtheproposedalgorithmisabletotransfergefromawelltrainedmodeltoasmallerandlesscomplexmodel,whichcanleadtohigheraccuracywithlesstrainingdata.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論