



付費(fèi)下載
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一種基于自蒸餾的自適應(yīng)惡意流量分類(lèi)算法流量的增長(zhǎng)給網(wǎng)絡(luò)安全監(jiān)測(cè)和攻擊防御帶來(lái)了挑戰(zhàn),網(wǎng)絡(luò)需要開(kāi)發(fā)新的分類(lèi)方法和技術(shù)來(lái)應(yīng)對(duì)。本論文介紹了一種基于自適應(yīng)惡意流量分類(lèi)算法,該算法使用深度神經(jīng)網(wǎng)絡(luò)和自蒸餾和分類(lèi)惡意流量。我們?cè)诔R?jiàn)的數(shù)據(jù)集上進(jìn)行了實(shí)驗(yàn)驗(yàn)證,結(jié)AbstractTheproliferationofmaliciousnetworktraffichasposedchallengesfornetworksecuritymonitoringandattackdefense,andcybersecurityexpertsneedtodevelopnewclassificationmethodsandtechniquestocombatitThispaperintroducesaself-distillation-basedadaptivemalicioustrafficclassificationalgorithmthatusesdeepneuralnetworksandselfdistillationmechanismtoidentifyandclassifymalicioustraffic.Weconductedexperimentsoncommondatasets,andtheresultsshowthatthealgorithmachieveshighrecognitionandclassificationaccuracy.elfdistillationmalicioustrafficdeepneuralnetworksclassificationaccuracy.Withtheincreasingsophisticationofcyberthreats,traditionalrule-basedandsignaturebasedapproachesarenolongersufficienttoprotectnetworksfrommalicioustraffic.Malwareauthorsusesophisticatedevasiontechniquestoavoiddetectionandintrusionpreventionsystemshaveadifficulttimekeepingupwiththeadvancedtechniquestheyusetoinfectmachines.Asaresult,networksecurityexpertsmustturntomoreadvancedtechnologiestodetectandmitigaterisksposedbymalicioustraffic.hasemergedasapromisingtechnologyfordetectingandclassifyingmalicioustrafficinrecentyearsItiscapableofprocessinglargeamountsofunstructureddataandautomaticallylearningfrompatternsandfeaturesindataInaddition,deeplearningmodelscanadapttonewdatainputsovertimeandimprovetheiraccuracywithmoretrainingdataHoweverdeeplearningmodelsoftenrequirelargeamountsoflabeleddatatoachievehighaccuracy,whichisasignificantchallengeinthecontextofnetworktrafficclassificationduetothelackoflabeleddatafordifferenttypesofmalicioustraffic.Toaddressthischallenge,thispaperpresentsaself-distillation-basedadaptivemalicioustrafficclassificationalgorithmthatcanimprovetheaccuracyofdeepneuralnetworkswithlimitedlabeleddata.Specificallyweuseaself-distillationmechanismtotransferknowledgefromawelltrainedmodeltoasmallerandlesscomplexmodel,whichcanthenbeusedtoclassifymalicioustrafficwithlimitedlabeleddata.Severaltechniqueshavebeenproposedfortheclassificationofmalicioustraffic,includingmachinelearningmethodsandclusteringmethodsMachinelearningmethodsarebasedonmathematicalmodelsandlearnpatternsfromlabeleddata.Forexample,Zhangetal.[1]proposedamalwaredetectionapproachusingamulti-classsupportvectormachineChenetal.[2]proposedadeeplearningapproachformalwaredetectionusingconvolutionalneuralnetworks.Clusteringmethodsarebasedonthesimilarityofnetworktrafficflowsandaimtogroupsimilarflowsintoclusters.Forexample,Wangetal.[3]proposedamethodforclusteringnetworktrafficusingnonnegativematrixfactorization.Whilethesemethodshaveshownpromiseindetectingandclassifyingmalicioustraffictheyrequirelargeamountsoflabeleddataandarenotwell-suitedforclassifyingnewtypesofmalwareandattacks.Inadditionclusteringmethodsoftensufferfromlowaccuracyduetothedifficultyinaccuratelydefiningandclusteringnetworktrafficflows.Theproposedalgorithmisbasedonaself-distillationmechanismthatenablestransferlearningfromawell-trainedmodeltoasmallerandlesscomplexmodel.Theself-distillationprocessinvolvestrainingalargeandcomplexmodel(teachermodel)togeneratesofttargetsforasmallerandlesscomplexmodel(studentmodel)thatistrainedtomimicthebehavioroftheteachermodel.Thisprocessenablesthestudentmodeltoeffectivelylearnfromtheknowledgeandexperienceoftheteachermodel,leadingtohigheraccuracywithlesstrainingdata.TheoverallarchitectureoftheproposedalgorithmisshowninFigureThealgorithmconsistsoftwostages:teachermodeltrainingandstudentmodeltraining.Theteachermodelistrainedusingalargelabeleddatasetofnetworktrafficflowsandconsistsofmultipledeepneuralnetworksthatlearntoidentifyandclassifydifferenttypesofmalicioustraffic.Theteachermodelgeneratessofttargets(outputprobabilities)foreachinputexample,whichareusedtotrainthestudentmodel.Thestudentmodelistrainedusingthelabeleddataandthesofttargetsgeneratedbytheteachermodel.Thestudentmodelconsistsofasmallerandlesscomplexneuralnetworkthatisdesignedtomimicthebehavioroftheteachermodel.Duringtraining,thestudentmodelisoptimizedusingthecross-entropylossbetweenthestudentoutputandthesofttargetsgeneratedbytheteachermodel.OncethestudentmodelistraineditcanbeusedtoclassifynewnetworktrafficflowswithlimitedlabeleddataDuringclassification,thestudentmodelgeneratesoutputprobabilitiesthatarecomparedtoapredefinedthresholdtodeterminewhethertheflowismaliciousorbenign.onToevaluatetheperformanceoftheproposedalgorithm,weconductedexperimentsontwocommonlyuseddatasetsISCX-2012andUNSWNBBothdatasetsconsistofnetworktrafficflowslabeledaseitherbenignormalicious.datasetweuseaportionofthelabeleddatafortrainingtheteachermodelandtheremainingdatafortrainingthestudentmodelandevaluatingtheperformanceofthealgorithm.Theperformanceoftheproposedalgorithmisevaluatedusingthefollowingmetricsdetectionrate(DR),falsepositiverate(FPR),andclassificationaccuracy(CA).Table1showstheexperimentalresultsontheISCX-2012dataset.Theresultsshowthattheproposedalgorithmachieveshigherdetectionratesandclassificationaccuracythanotherstate-of-the-artmethodsusinglesslabeleddata.Table2showstheexperimentalresultsontheUNSW-NB15dataset.Again,theproposedalgorithmachieveshigherdetectionratesandclassificationaccuracythanotherstate-of-the-artmethodsusinglesslabeleddata.Theseresultsconfirmtheeffectivenessoftheproposedalgorithmtingandclassifyingmalicioustrafficwithlimitedlabeleddatagselfdistillationtheproposedalgorithmisabletotransfergefromawelltrainedmodeltoasmallerandlesscomplexmodel,whichcanleadtohigheraccuracywithlesstrainingdata.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度節(jié)能環(huán)保產(chǎn)業(yè)合作合同
- 2025版標(biāo)準(zhǔn)房地產(chǎn)融資居間服務(wù)合同范本
- 2025年成人自考-自考專(zhuān)科(護(hù)理學(xué))-自考專(zhuān)科(病理學(xué):02901)歷年參考題庫(kù)含答案解析(5套)
- 財(cái)經(jīng)面試實(shí)戰(zhàn)模擬題及答案解析基建財(cái)務(wù)篇
- 2025年副高衛(wèi)生職稱(chēng)-臨床醫(yī)學(xué)類(lèi)-心血管內(nèi)科學(xué)(副高)代碼:001歷年參考題庫(kù)含答案解析
- 2025年住院醫(yī)師規(guī)培-青海-青海住院醫(yī)師規(guī)培(神經(jīng)外科)歷年參考題庫(kù)含答案解析(5套)
- 2025年住院醫(yī)師規(guī)培-重慶-重慶住院醫(yī)師規(guī)培(口腔修復(fù)科)歷年參考題庫(kù)典型考點(diǎn)含答案解析
- 氣象小主播主持課件
- 新醫(yī)學(xué)領(lǐng)域面試題目與答案全揭秘
- 莆田求職面試必 備進(jìn)廠面試題
- 2023施工技術(shù)交底編制與管理標(biāo)準(zhǔn)培訓(xùn)
- 物業(yè)管理考核細(xì)則-
- GB/T 3683-2023橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強(qiáng)液壓型規(guī)范
- 義教課程標(biāo)準(zhǔn)(2022年版)解讀·徐藍(lán)
- GA/T 954-2011法庭科學(xué)工具痕跡中凹陷痕跡的檢驗(yàn)規(guī)范
- DB1331T004-2022雄安新區(qū)數(shù)據(jù)安全建設(shè)導(dǎo)則
- 環(huán)水保工程監(jiān)理細(xì)則
- DB11-T1834-2021 城市道路工程施工技術(shù)規(guī)程高清最新版
- 手工電弧焊焊接頭基本形式與尺寸
- 開(kāi)拓進(jìn)?。毫闾计?chē)的材料脫碳之路
- (完整版)自我護(hù)理能力量表ESCA
評(píng)論
0/150
提交評(píng)論