浮式平臺總體性能_第1頁
浮式平臺總體性能_第2頁
浮式平臺總體性能_第3頁
浮式平臺總體性能_第4頁
浮式平臺總體性能_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浮式平臺總體性能第1頁,課件共20頁,創(chuàng)作于2023年2月

4.1細(xì)長幾何物體水動力系數(shù)的二維近似

海洋結(jié)構(gòu)中的浮體,如船體,半潛式平臺的浮箱、立柱等,常為長度較其橫剖面尺寸大得多的結(jié)構(gòu)。對于這類細(xì)長構(gòu)件,當(dāng)波浪經(jīng)過并引起浮體運(yùn)動時(shí),附近流體將主要垂直于浮體軸線的平面內(nèi)流動,因此可將作用在整個(gè)浮體上的流體動力由各個(gè)橫剖面“切片”上的流體動力疊加得到,這便是工程上常用的切片法。第2頁,課件共20頁,創(chuàng)作于2023年2月第3頁,課件共20頁,創(chuàng)作于2023年2月第4頁,課件共20頁,創(chuàng)作于2023年2月應(yīng)用切片法時(shí),將浮體水下部分分割為若干(約20)切片,計(jì)算每一切片單位長度上的二維附加質(zhì)量系數(shù)及阻尼系數(shù),乘以切片長度后便得到每一切片上的水動力。對于任意形狀剖面的二維水動力系數(shù)的計(jì)算,可用多級展開法,奇點(diǎn)分布法等。例:對于半徑為a的圓形剖面(無界流情況,不考慮自由面邊界和其它非物面邊界影響),第5頁,課件共20頁,創(chuàng)作于2023年2月例:用切片理論求圓柱體在無界流體中的縱搖附加質(zhì)量系數(shù)解:當(dāng)柱體縱搖時(shí),縱坐標(biāo)為的切片將有垂向加速度,在切片上對應(yīng)的垂向力是:此力對y軸的力矩是:第6頁,課件共20頁,創(chuàng)作于2023年2月由定義得到圓柱體縱搖附加質(zhì)量系數(shù)為:第7頁,課件共20頁,創(chuàng)作于2023年2月4.2長波下波浪力的切片近似通過一矗立在海底并穿出水面的垂直圓柱體來舉例說明長波下作用于圓柱體結(jié)構(gòu)上波浪力的切片近似。第8頁,課件共20頁,創(chuàng)作于2023年2月單位法向量寫為。對于沿軸正向傳播的波浪,未受干擾的壓力,也就是Froude-Kriloff壓力可以表示為微元上受到的Froude-Kriloff力可以寫為第9頁,課件共20頁,創(chuàng)作于2023年2月現(xiàn)在假設(shè)波長比圓柱的半徑R大得多,這意味著是小量。此式可以簡化為可知壓力的最大項(xiàng),也就是與同相的那一項(xiàng),對水平力沒有任何貢獻(xiàn)。現(xiàn)在可以寫為:這里是圓柱切片的排水質(zhì)量,而是好像圓柱體不存在時(shí)處切片軸平均位置的流體加速度在方向的分量。第10頁,課件共20頁,創(chuàng)作于2023年2月未受擾動的壓力只是切片上所有力的一部分,通過研討未擾動的速度場來理解這一點(diǎn)。未擾動速度致使流體穿過圓柱壁,導(dǎo)致法向不可穿透邊界條件的破壞。因此柱體必然要建立一壓力場,以形成一在柱面處抵消未受擾動速度場法向分量的速度場。由于長波浪假設(shè),可以說求解附加壓力分布的問題等同于圓柱體以速度強(qiáng)迫搖蕩的問題,其中是處未擾動流場在切片軸平均位置的流體速度在方向的分量,這樣流體就不會通過圓柱壁。由水動力學(xué)的基本知識可知強(qiáng)迫搖蕩速度作用在物體上的力可以寫為:其中正是附連質(zhì)量,對圓柱體來說與排水體積的質(zhì)量相等。第11頁,課件共20頁,創(chuàng)作于2023年2月上面所講述的是基于勢流理論的Morison方程中質(zhì)量力的由來,所謂質(zhì)量力是指與未受擾動流體加速度成比例的力。依據(jù)Morison公式(Morison等人,1950),單位長度的直立固定圓柱體切片上的水平力可以寫成:力的正向?yàn)椴ɡ藗鞑サ姆较颉A硗?,是水的密度,是圓柱直徑,則是切片中點(diǎn)未受擾動流體的水平速度和加速度。第12頁,課件共20頁,創(chuàng)作于2023年2月實(shí)際上,質(zhì)量和阻尼系數(shù)和是由經(jīng)驗(yàn)得到的并取決于許多參數(shù),如Reynolds數(shù)、Keulegan-Carpenter數(shù)、相關(guān)流的數(shù)值和表面粗糙率。已經(jīng)表明勢流理論對于圓柱體給出的是2,其中一半來自Froude-Kriloff力,另一半則來自繞射力。如果計(jì)入黏性效應(yīng),就不等于2了。要記住波長相對于直徑假定是大值。對于任意的波長,可以使用McCamy&Fuchs(1954)的線性分析結(jié)果。第13頁,課件共20頁,創(chuàng)作于2023年2月可以將以上的探討推廣到小體積結(jié)構(gòu)物。所謂小體積是指波長比物體的特征截面的尺寸大。例如,對于垂向圓柱這是指,其中是圓柱直徑。相對小物體上的力可以寫為:式中:式中:是未受擾動波浪場的壓強(qiáng);是物面法向單位向量,指向流場為正;積分是沿物體平均濕表面。此外,是未受擾動流場沿軸的加速度分量,并且是在物體的幾何中心估算的。第14頁,課件共20頁,創(chuàng)作于2023年2月上式第一項(xiàng)是Froude-Kriloff力。其他項(xiàng)在物理意義上代表由于物體的存在,未受擾動壓力場發(fā)生了變化(繞射力)。如果物體完全浸入水中,并相對于波長來說較小,而且整個(gè)物體表面是濕的,那么可以認(rèn)為:式中:是排水體積。該公式在物體浸入水中成立,對于直立在海床上底部并不是濕表面的結(jié)構(gòu)物來說是無效的。然而事實(shí)上,在水平海床的情況下,結(jié)構(gòu)物底部沒有流體壓力并不影響到水平力。因此該式在這種情況下只是對垂向力無效。第15頁,課件共20頁,創(chuàng)作于2023年2月長波下TLP上的垂向波激力第16頁,課件共20頁,創(chuàng)作于2023年2月波激力主要部分來自作用在浮筒上的壓力。切片理論可以被用來近似估算這些壓力,因?yàn)楦⊥部梢越瓶醋鳛榧?xì)長體。于是,作用在遠(yuǎn)離圓柱處長度為的切片上的垂向波激載荷可以寫為:式中:是截面面積;是無限流場中垂蕩的二維附連質(zhì)量;是截面面積幾何中心處未受擾動流體的垂向加速度。該式基于相對于橫截面的長波浪假設(shè)。第一項(xiàng)代表Froude-Kriloff力。應(yīng)該強(qiáng)調(diào)一下該式中的Froude-Kriloff力只有在截面周邊全濕的情況下才有效。當(dāng)這一點(diǎn)不滿足時(shí),F(xiàn)roude-Kriloff力應(yīng)該嚴(yán)格地對未受擾動壓強(qiáng)戶積分來得到。第17頁,課件共20頁,創(chuàng)作于2023年2月為了推導(dǎo)的表達(dá)式,我們記式中:是入射波的幅值。在浮筒上朝著z軸方向,可以得到下列垂向力的分量:式中:是截面面積幾何中心的z坐標(biāo)。已在圖中標(biāo)明。第18頁,課件共20頁,創(chuàng)作于2023年2月在浮筒上朝著y軸方向,可以得到下列垂向力的分量:式中:在圖中也已標(biāo)明。另外,僅計(jì)算作用在圓柱底端的Froude-Kriloff力(因其受到的繞射水動力不能再由切片理論近似得到,目前進(jìn)行忽略)。作用在單個(gè)圓柱體底部的Froude-Kriloff力由入射波壓力積分得到(進(jìn)行長波近似):第19頁,課件共20頁,創(chuàng)作于2023年2月將作用在浮筒和四個(gè)圓柱底部的垂向力求和,可以獲得如下的作用于TLP平臺上的垂向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論