韋伯分布介紹_第1頁
韋伯分布介紹_第2頁
韋伯分布介紹_第3頁
韋伯分布介紹_第4頁
韋伯分布介紹_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

章伯分怖章伯分彳布(WeibulldistribulM指譴攵分彳布舄一特例。其p.d.泰)f(x)=o徹尸一七一心"注>Oj其中a,B>0。以陽3向表此分布,有二參敷a,們潟尺度>?,。舄形狀參敷。若取。二1,劇」得的)分布,以職電1)=£四表之。底下富合出一些菖白分布p.d.之圈形。章伯分布是瑞典物理孥家WaloddiWeibullSS展弓鼠化材料的理^,於西元1939年所引逵,是一重交新的分布。在可靠度理^及有^嘉命梭定冏題裨,常少不了章伯分布的影子。網(wǎng)(土月)分布的分布函敷SF(對=1—廠心丘注>0令期望值典燮巽敷分別Se(x)=q-/t(i+?國X)=a-2^(r(i+1)-(r(i十i))2)

CharacteristicEffectsoftheShapeParameter,p,fortheWeibullDistribution1.-互TheWeibullshapeparameter,P,isalsoknownastheslope.ThisisbecausethevalueofPisequaltotheslopeoftheregressedlineinaprobabilityplot.Differentvaluesoftheshapeparametercanhavemarkedeffectsonthebehaviorofthedistribution.Infact,somevaluesoftheshapeparameterwillcausethedistributionequationstoreducetothoseofotherdistributions.Forexample,whenp=1,thepdfofthethree-parameterWeibullreducestothatofthetwo-parameterexponentialdistributionor:where慧R"w"failurerate.1.-互Theparameterpisapurenumber,i.e.itisdimensionless.TheEffectofponthepdfFigure6-1showstheeffectofdifferentvaluesoftheshapeparameter,p,ontheshapeofthepdf.Onecanseethattheshapeofthepdfcantakeonavarietyofformsbasedonthevalueofp.

DLHULIDLILISUDLID4UD1102UV'/eibullD^fV'/ithLKp<1. .andp>1Tirne(t)LILHUUDDDSLIDDD4UDDD2U\'VeibullDiJ'fwithU<p<1,[\=],andp>1Figure6-1:TheeffectoftheWeibullshapeparameteronthepdf.For0<DLHULIDLILISUDLID4UD1102UV'/eibullD^fV'/ithLKp<1. .andp>1Tirne(t)LILHUUDDDSLIDDD4UDDD2U\'VeibullDiJ'fwithU<p<1,[\=],andp>1Figure6-1:TheeffectoftheWeibullshapeparameteronthepdf.For0<As繇丁一皈一。皿》),A’w-收手,顧何-OCT-Q.f(?decreasesmonotonicallyandisconvexasTincreasesbeyondthevalueof1.Themodeisnon-existent.ForP>1:

.f(T=0atT=0(orY).?f(Tincreasesas酸''(themode)anddecreasesthereafter.. For&<2.6theWeibullpdfispositivelyskewed(hasarighttail),for2.6<&<3.7itscoefficientofskewnessapproacheszero(notail).Consequently,itmayapproximatethenormalpdf,andfor&>3.7itisnegativelyskewed(lefttail).Thewaythevalueof&relatestothephysicalbehavioroftheitemsbeingmodeledbecomesmoreapparentwhenweobservehowitsdifferentvaluesaffectthereliabilityandfailureratefunctions.Notethatfor&=0.999,f(0)=酸030:3,butfor&=1.001,f(°)=0.ThisabruptshiftiswhatcomplicatesMLEestimationwhen&isclosetoone.TheEffectofflonthecdfandReliabilityFunctionEffectuf-A^lbullShspHParam玳日「口nProbsNIlf:Effectuf-A^lbullShspHParam玳日「口nProbsNIlf:PlotFigure6-2:EffectofflonthecdfonaWeibullprobabilityplotwithafixedvalueof〃.Figure6-2showstheeffectofthevalueof&onthecdf,asmanifestedintheWeibullprobabilityplot.Itiseasytoseewhythisparameterissometimesreferredtoastheslope.Notethatthemodelsrepresentedbythethreelinesallhavethesamevalueof〃.Figure6-3showstheeffectsofthesevariedvaluesof&onthereliabilityplot,whichisalinearanalogoftheprobabilityplot.

U1LLI.UU2UULILI3DDA0400DO5DDA06UUDO7DDUDTirrt!.(t)Figure6-3:TheeffectofvaluesofpontheWeibullreliabilityplot.U1LLI.UU2UULILI3DDA0400DO5DDA06UUDO7DDUDTirrt!.(t)Figure6-3:TheeffectofvaluesofpontheWeibullreliabilityplot.R(Ddecreasessharplyandmonotonicallyfor0<&<1andisconvex.For&=1,R(T)decreasesmonotonicallybutlesssharplythanfor0<&<1andisconvex.For&>1,R(T)decreasesasTincreases.Aswear-outsetsin,thecurvegoesthroughaninflectionpointanddecreasessharply.TheEffectofpontheWeibullFailureRateFunctionThevalueof&hasamarkedeffectonthefailurerateoftheWeibulldistributionandinferencescanbedrawnaboutapopulation'sfailurecharacteristicsjustbyconsideringwhetherthevalueof&islessthan,equalto,orgreaterthanone.

ULI2ULIULI18UULiltiUU1H4LIUL1120ULI1LIUULIUSUULIU6ULILIU40ULIU2LIUTirre,it)Figure6-4:TheeffectofBontheWeibullfailureratefunction.ULI2ULIULI18UULiltiUU1H4LIUL1120ULI1LIUULIUSUULIU6ULILIU40ULIU2LIUTirre,it)Figure6-4:TheeffectofBontheWeibullfailureratefunction.AsindicatedbyFigure6-4,populationswith&<1exhibitafailureratethatdecreaseswithtime,populationswithP=1haveaconstantfailurerate(consistentwiththeexponentialdistribution)andpopulationswith&>1haveafailureratethatincreaseswithtime.AllthreelifestagesofthebathtubcurvecanbemodeledwiththeWeibulldistributionandvaryingvaluesof&.TheWeibullfailureratefor0<&<1isunboundedatT=0(or?).Thefailurerate,久⑺,decreasesthereaftermonotonicallyandisconvex,approachingthevalueofzeroas繇'一一°°or4(霞^303)=0.Thisbehaviormakesitsuitableforrepresentingthefailurerateofunitsexhibitingearly-typefailures,forwhichthefailureratedecreaseswithage.Whenencounteringsuchbehaviorinamanufacturedproduct,itmaybeindicativeofproblemsintheproductionprocess,inadequateburn-in,substandardpartsandcomponents,orproblemswithpackagingandshipping.

ForP=1,^(^)yieldsaconstantvalueof繇豆"or:警=a=ia(q=a=*Thismakesitsuitableforrepresentingthefailurerateofchance-typefailuresandtheuseful肝eperiodfailurerateofunits.Forp>1,^(T)increasesasTincreasesandbecomessuitableforrepresentingthefailurerateofunitsexhibitingwear-outtypefailures.For1<p<2,the4(T)curveisconcave,consequentlythefailurerateincreasesatadecreasingrateasTincreases.Forp=2thereemergesastraightlinerelationshipbetween4(T)andT,startingatavalueof從T)=0atT=y,andincreasingthereafterwithaslopeofConsequently,thefailurerateincreasesataconstantrateasincreasingthereafterwithaslopeofConsequently,thefailurerateincreasesataconstantrateasincreases.Furthermore,if"=1theslopebecomesequalto2,andwheny=0,4(T)becomesastraightlinewhichpassesthroughtheoriginwithaslopeof2.Notethatatp=2,theWeibulldistributionequationsreducetothatoftheRayleighdistribution.Whenp>2,the^(T)curveisconvex,withitsslopeincreasingasTincreases.Consequently,thefailurerateincreasesatanincreasingrateasTincreasesindicatingwear-outlife.TopCharacteristicEffectsoftheScaleParameter,n,fortheWeibullDistributionFigure6-5:TheeffectsofnFigure6-5:TheeffectsofnontheWeibullpdfforacommonp.Achangeinthescaleparameter"hasthesameeffectonthedistributionasachangeoftheabscissascale.Increasingthevalueof"whileholdingPconstanthastheeffectofstretchingoutthepdf.Sincetheareaunderapdfcurveisaconstantvalueofone,the"peak"ofthepdfcurvewillalsodecreasewiththeincreaseof〃,asindicatedinFigure6-5.Ifnisincreasedwhilepandyarekeptthesame,thedistributiongetsstretchedouttotherightanditsheightdecreases,whilemaintainingitsshapeandlocation.Ifnisdecreasedwhilepandyarekeptthesame,thedistributiongetspushedintowardstheleft(i.e.towardsitsbeginningortowards0or?),anditsheightincreases.nhasthesameunitsasT,suchashours,miles,cycles,actuations,etc.TopCharacteristicEffectsoftheLocationParameter,yfortheWeibullDistributionThelocationparameter,Yasthenameimplies,locatesthedistributionalongtheabscissa.Changingthevalueofyhastheeffectof"sliding"thedistributionanditsassociatedfunctioneithertotheright(ify>0)ortotheleft(ify<0).EffectofLocationparameteryonWeibull網(wǎng)EffectofLocationparameter7onWeibullEffectofLocationparameteryonWeibull網(wǎng)EffectofLocationpar

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論