




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
.word.zl..word.zl.17.1勾股定理技巧1利用勾股定理計算線段的長如下圖,在RtZXABC中,ZC=90°,AD平分/CAB,DE,人8于點(diǎn)日,假設(shè)AC=6,BC=8,CD=3.⑴求DE的長;(2)求AB的長及^ADB的面積.解析:(1)根據(jù)角平分線的性質(zhì)得出CD=DE,從而DE=3;⑵首先利用勾股定理求出AB的長,然后計算4ADB的面積.解:(1).??AD平分/CAB,DE±AB,ZC=90°,aCD=DE.??.CD=3,:DE=3.(2)在Rt^ABC中,由勾股定理,得AB=%:AC2+BC2=<62+82=10,??.△ADB的面積為△ADB=△ADB=1AB?DE=12 2103=15.技巧2利用勾股定理解決折疊問題如下圖,將長方形ABCD沿著BD折疊,使點(diǎn)6落在C'處,BC'交人口于點(diǎn)日,假設(shè)AD=8.AB=4.(1)求^BDE的周長;(2)求4BDE的面積.解析:⑴由將長方形ABCD沿BD折疊,知C'D=CD,/C=/C',/1=/2,可證BE=DE,即AE+BE=AD.在Rt^ABE和Rt^BCD中,用勾股定理求出BE,BD的長,進(jìn)而求出^BDE的周長;⑵由題意,知C'=90°即DC'^BC',那么S△BDE=2BD.CD解:①:將長方形ABCD沿著BD折疊,??.CD=C'D,/C=/C',/1=/2.又???/2=/3,..?/1=/3.:BE=DE.設(shè)BE=DE=x,那么AE=8—x.在Rt^ABE中,BE2-AE2=AB2,即X2—(8-x)2=42,解得*=5,即BE=DE=5.在Rt△BCD中,BD=BCC2+CD2=82+42=4<5,??.△BDE的周長為BE+DE+BD=10+4<5.⑵???/C'=9O°,:DC」BC'.
',',SABDE=1bE-C'D=1*5X4=10,即^BDE的面積為10.技巧3利用勾股定理解決最短路徑問題如圖⑴所示是一個長方體的大箱子,它的高為3m,底面是邊長為2m的正方形.現(xiàn)在點(diǎn)人處有一只壁虎,想沿長方體外表到達(dá)點(diǎn)6處,那么壁虎爬行的最短路程是多少?⑴⑵⑶解析:首先將長方體展開成平面圖形,連接AC,根據(jù)兩點(diǎn)之間線段最短來解答,然后利用勾股定理求出線段的長度.解:(1)如圖(2),將長方體的右外表翻折至前外表,使人,6兩點(diǎn)共面,連接AC,那么此時線段AC的長度即為此種情況的最短路程./.AC2=(2+2)2+32=25./.AC=5.⑵如圖⑶,將長方體的后外表翻折至上外表,使人,6兩點(diǎn)共面,連接AC,那么此時線段AC的長度即為此種情況的最短路程./.AC2=22+(2+3)2=4+25=29.:AC=v29.-/x29>5,「?壁虎爬行的最短路程是5m.技巧4利用勾股定理求圖形的面積如下圖,四邊形ABCD是正方形,E是正方形內(nèi)一點(diǎn),且人日,BE.假設(shè)AE=6,BE=8,求圖中陰影局部的面積.解析:先利用勾股定理求得正方形ABCD的邊長,再根據(jù)面積公式求得正方形和直角三角形的面積,最后求出陰影局部的面積.解::人日,8日,:/日=90°.\'AE=6,BE=8,:AB=\AE2+BE2=v'62+82=10.正方形ABCD的面積為AB2=100.??.s△ABE=??.s△ABE=-AE?BE=-2 268=24,圖中陰影局部的面積為S陰影=100—24=76.技巧5利用勾股定理解決非直角三角形中的問題如圖⑴所示,在^ABC中,/C=60°.AB=14,AC=10,求BC的長.⑴⑵解析:過點(diǎn)人作人口,86,那么出現(xiàn)兩個直角三角形:Rt^ACD與Rt^ABD,借助于勾股定理解題即可.解:如圖(2)所示,過點(diǎn)人作人口,86,交86于點(diǎn)口.\'ZC=60°,AC=10,/.CD=5,AD=5<3.又?.?AB=14,:BD=<142-5(32二、196—75=11.??.BC=BD+CD=11+5=16.技巧6勾股定理在解決實際問題中的應(yīng)用如圖⑴,由于過度采伐森林和破壞植被,我國局部地區(qū)頻頻遭受沙塵暴的侵襲.近日,A城氣象局測得沙塵暴中心在A城正西方向240km的點(diǎn)8處,以12km/h的速度向北偏東600方向移動,距沙塵暴中心150km的X圍均為受影響區(qū)域.⑴A城是否會受到這次沙塵暴的影響?為什么?⑵假設(shè)A城受到這次沙塵暴影響,那么遭受影響的時間有多長?北
十,八'1,八'1.巧?[、一BA.- * 抖 A(1)⑵解析:⑴過點(diǎn)人向沙塵暴行進(jìn)的方向作垂線,得到點(diǎn)人到直線BM的距離,將該距離與150km作比擬來判斷A城是否會受影響.(2)由于在沙塵暴中心周圍150km的X圍內(nèi)均受影響,故以點(diǎn)A為圓心,以150km為半徑畫弧,該弧與沙塵暴所經(jīng)路線有兩個交點(diǎn),先利用勾股定理求出這兩點(diǎn)的距離,再用這個距離除以沙塵暴的速度即可求出A城受影響的時間.解:⑴A城會受到影響,理由如下:如圖⑵,過點(diǎn)人作人6,8乂,交8乂于點(diǎn)6.?.?在Rt^ABC中,/ABM=30°,/.AC=AAB=—X240=120(km).?/120V150,
「?A城會受到這次沙塵暴的影響.⑵如圖⑵,以點(diǎn)A為圓心,以150km為半徑畫弧,與BM交于E,F兩點(diǎn).由題意,得CE=,A£2+A02=J1502+1202=90(km).?.?AE=AF,:/AEF=/AFE.又.../ACE=/ACF,AC=AC,」.△ACE白△ACF(AAS).:CE=CF./.EF=2CE=2X90=180(km).」.180+12=15(h).「?A城遭受這次沙塵暴影響的時間為15h.17.2勾股定理的逆定理技巧1利用勾股定理的逆定理判斷三角形的形狀a,b,c是^ABC的三邊長,且滿足關(guān)系式、:c2—a2—b2+\a-b|=0,那么^ABC的形狀為 解析:,「M2—a2—b2+a—b=0,」.C2—a2—b2=0,且a—b=0.」.C2=a2+b2,且a=b「△ABC為等腰直角三角形.答案:等腰直角三角形.技巧2勾股定理及其逆定理的綜合運(yùn)用如下圖,在四邊形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB^BC.試說明AC^CD.解析:先在Rt^ABC中,利用勾股定理,求出AC的長,再利用勾股定理的逆定理求得/ACD=90°.解:vAB±BC,a/B=90°.??AB=1,BC=2,;.AC2=AB2+BC2=12+22—5.在^ACD中,AC2+CD2=5+22=5+4=9,AD2=32=9,?.AC2+CD2=AD2.?./ACD=90°,即AJCD.技巧3利用勾股定理的逆定理求三角形的面積如下圖,D,E,F分別是^ABC中BC,AB,AC邊上的點(diǎn),且AE=AF,BE=BD,CF=CD,AB=4,AC=BD=3,求^ABC的面積.CD2解析:先出BC,證明^ABC是直角三角形,即可求出面積.
解:■.殷=3設(shè)BD=3x,那么CD=2x,由AE=AF,BE=BD,CF=CD,CD2即AF=3—2x,AE=4—3x,「.3—2*=4—3*,解得*=1,「衛(wèi)6=3*+2*=5.又...32+42=52,即ACz+AB2=BC2,」.△ABC是直角三角形,/A=90°.△ABC△ABC=AB*AC=—2 2技巧4利用勾股定理的逆定理解決實際問題如下圖,南北向直線MN為我國領(lǐng)海線,即MN以西為我國領(lǐng)海,以東為公海,上午9:50,我國反走私艇A發(fā)現(xiàn)正東方向有一走私艇6以13nmile/h的速度偷偷向我國領(lǐng)海駛來,便 ..: 「立即通知正在MN線上巡邏的我國反走私艇8.A,6兩艇的距'—??"一離是13nmile,A,8兩艇的距離是5nmile,反走私艇B測得其離走私艇6的距離是12nmile.假設(shè)走私艇6的速度不變,那二么走私艇C最早會在什么時間進(jìn)入我國領(lǐng)海?解析:如下圖,設(shè)MN交人6于點(diǎn)日,從而確定么BEC=90°,由條件確定/ABC=90°,利用勾股定理求出CE的長,最后由速度公式求出時間.解:如下圖,設(shè)MN交人6于點(diǎn)日,那么/BEC=90°.由題意,得AB2+BC2=52+122=169=132=AC2,故^ABC是直角三角形,/ABC=90°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省廈門市湖里實驗中學(xué)2026屆中考物理對點(diǎn)突破模擬試卷含解析
- 2026屆湖北省洪湖市中考適應(yīng)性考試語文試題含解析
- 2025 醫(yī)學(xué)皮膚科兒童雀斑病例查房課件
- 水利公司第三方安全服務(wù)方案
- 射線檢測教材講解
- 酒店店長工作匯報
- 酒店行政人事培訓(xùn)課件
- 二零二五年度碼頭合作經(jīng)營貨物裝卸工程合同樣本
- 二零二五年度新型綠色建筑地下儲藏室租賃及環(huán)保認(rèn)證協(xié)議
- 2025版農(nóng)家樂特色農(nóng)產(chǎn)品直采協(xié)議
- 異常子宮出血護(hù)理措施
- 基于項目制教學(xué)的未來課堂構(gòu)建探討
- 2025年入黨考試題及答案
- 陵園保潔服務(wù)方案(3篇)
- 現(xiàn)代康復(fù)治療技術(shù)試題及答案
- 2025至2030理療儀行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢及投資規(guī)劃深度研究報告
- 中醫(yī)適宜技術(shù)在泌尿外科的運(yùn)用
- 文言文特殊句式(倒裝句、省略句等)測試題帶答案
- 口腔科室工作匯報
- 2025至2030中國醫(yī)療級顯示器行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢及投資規(guī)劃深度研究報告
- 2023年上海市上海市徐匯區(qū)楓林路街道招聘社區(qū)工作者真題附詳細(xì)解析
評論
0/150
提交評論