




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等比數列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.點是單位圓上不同的三點,線段與線段交于圓內一點M,若,則的最小值為()A. B. C. D.3.已知函數,若關于的方程有且只有一個實數根,則實數的取值范圍是()A. B.C. D.4.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.5.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加6.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁7.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.8.已知數列是公比為的等比數列,且,,成等差數列,則公比的值為(
)A. B. C.或 D.或9.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.710.設全集,集合,,則()A. B. C. D.11.定義在上的函數滿足,則()A.-1 B.0 C.1 D.212.若將函數的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數的圖象,則下列說法正確的是()A.函數在上單調遞增 B.函數的周期是C.函數的圖象關于點對稱 D.函數在上最大值是1二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若,則的取值范圍是__14.六位同學坐在一排,現讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數字回答).15.已知拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于_____.16.的展開式中的常數項為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)對于正整數,如果個整數滿足,且,則稱數組為的一個“正整數分拆”.記均為偶數的“正整數分拆”的個數為均為奇數的“正整數分拆”的個數為.(Ⅰ)寫出整數4的所有“正整數分拆”;(Ⅱ)對于給定的整數,設是的一個“正整數分拆”,且,求的最大值;(Ⅲ)對所有的正整數,證明:;并求出使得等號成立的的值.(注:對于的兩個“正整數分拆”與,當且僅當且時,稱這兩個“正整數分拆”是相同的.)18.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)若射線的極坐標方程為().設與相交于點,與相交于點,求.19.(12分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.20.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.21.(12分)數列滿足,,其前n項和為,數列的前n項積為.(1)求和數列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數m、k,均有.22.(10分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據等比數列的前項和公式,判斷出正確選項.【詳解】由于數列是等比數列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數列前項和公式,屬于基礎題.2.D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數量積的應用,考查基本不等式的應用,屬于中檔題.3.B【解析】
利用換元法設,則等價為有且只有一個實數根,分三種情況進行討論,結合函數的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數根.當時,當時,,由即,解得,結合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數有無數個零點,不符合題意;當時,當時,,此時最小值為,結合圖象可知,要使得關于的方程有且只有一個實數根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數方程根的個數的應用.利用換元法,數形結合是解決本題的關鍵.4.B【解析】
直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.5.C【解析】
根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.6.C【解析】
分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.7.B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標,利用,求出a,b的關系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質,考查向量知識,考查學生的計算能力,屬于中檔題.8.D【解析】
由成等差數列得,利用等比數列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點睛】本題考查等差等比數列的綜合,利用等差數列的性質建立方程求q是解題的關鍵,對于等比數列的通項公式也要熟練.9.B【解析】
在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【詳解】在等差數列的前項和為,則則故選:B【點睛】本題考查等差數列中求由已知關系求公差,屬于基礎題.10.D【解析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數學運算的能力,屬于中檔題.11.C【解析】
推導出,由此能求出的值.【詳解】∵定義在上的函數滿足,∴,故選C.【點睛】本題主要考查函數值的求法,解題時要認真審題,注意函數性質的合理運用,屬于中檔題.12.A【解析】
根據三角函數伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據正弦型函數最小正周期的求解可知錯誤;根據正弦型函數在區(qū)間內值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數的性質,涉及到三角函數的伸縮變換、正弦型函數周期性、單調性和對稱性、正弦型函數在一段區(qū)間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數的圖象來判斷出所求函數的性質.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據分段函數的性質,即可求出的取值范圍.【詳解】當時,,,當時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數的性質,已知分段函數解析式求參數范圍,還涉及對數和指數的運算,屬于基礎題.14.135【解析】
根據題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應用能力.15.2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點,即求.【詳解】不妨設點P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點為F,準線為l,P為C上一點∴,.∵M,N分別為PQ,PF的中點,∴,∵PQ垂直l于點Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點,∴,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎題.16.160【解析】
先求的展開式中通項,令的指數為3即可求解結論.【詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數項為:.故答案為:160.【點睛】本題考查二項式系數的性質,關鍵是熟記二項展開式的通項,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ),,,,;(Ⅱ)為偶數時,,為奇數時,;(Ⅲ)證明見解析,,【解析】
(Ⅰ)根據題意直接寫出答案.(Ⅱ)討論當為偶數時,最大為,當為奇數時,最大為,得到答案.(Ⅲ)討論當為奇數時,,至少存在一個全為1的拆分,故,當為偶數時,根據對應關系得到,再計算,,得到答案.【詳解】(Ⅰ)整數4的所有“正整數分拆”為:,,,,.(Ⅱ)當為偶數時,時,最大為;當為奇數時,時,最大為;綜上所述:為偶數,最大為,為奇數時,最大為.(Ⅲ)當為奇數時,,至少存在一個全為1的拆分,故;當為偶數時,設是每個數均為偶數的“正整數分拆”,則它至少對應了和的均為奇數的“正整數分拆”,故.綜上所述:.當時,偶數“正整數分拆”為,奇數“正整數分拆”為,;當時,偶數“正整數分拆”為,,奇數“正整數分拆”為,故;當時,對于偶數“正整數分拆”,除了各項不全為的奇數拆分外,至少多出一項各項均為的“正整數分拆”,故.綜上所述:使成立的為:或.【點睛】本土考查了數列的新定義問題,意在考查學生的計算能力和綜合應用能力.18.(1)曲線的普通方程為;直線的直角坐標方程為(2)【解析】
(1)利用消去參數,將曲線的參數方程化成普通方程,利用互化公式,將直線的極坐標方程化為直角坐標方程;(2)根據(1)求出曲線的極坐標方程,分別聯(lián)立射線與曲線以及射線與直線的極坐標方程,求出和,即可求出.【詳解】解:(1)因為(為參數),所以消去參數,得,所以曲線的普通方程為.因為所以直線的直角坐標方程為.(2)曲線的極坐標方程為.設的極徑分別為和,將()代入,解得,將()代入,解得.故.【點睛】本題考查利用消參法將參數方程化成普通方程以及利用互化公式將極坐標方程化為直角坐標方程,還考查極徑的運用和兩點間距離,屬于中檔題.19.(1)極小值為,極大值為.(2)【解析】
(1)根據斜線的斜率即可求得參數,再對函數求導,即可求得函數的極值;(2)根據題意,對目標式進行變形,構造函數,根據是單調減函數,分離參數,求函數的最值即可求得結果.【詳解】(1)函數的定義域為,,,,可知,,解得,,可知在,時,,函數單調遞增,在時,,函數單調遞減,可知函數的極小值為,極大值為.(2)可以變形為,可得,可知函數在上單調遞減,,可得,設,,可知函數在單調遞減,,可知,可知參數的取值范圍為.【點睛】本題考查由切線的斜率求參數的值,以及對具體函數極值的求解,涉及構造函數法,以及利用導數求函數的值域;第二問的難點在于對目
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省耿馬縣民族中學2026屆化學高二第一學期期末學業(yè)水平測試模擬試題含答案
- 2025年國土資源普查核儀器合作協(xié)議書
- 2025年垃圾收轉裝備項目合作計劃書
- 2024年葫蘆島市龍港區(qū)城市社區(qū)專職網格員考試真題(附答案)
- 2026屆上海市寶山區(qū)淞浦中學化學高一第一學期期中質量檢測試題含解析
- 2025至2030中國油船行業(yè)發(fā)展趨勢與行業(yè)項目調研及市場前景預測評估報告
- 2025至2030豬養(yǎng)殖行業(yè)運營態(tài)勢與投資前景調查研究報告
- 2025至2030中國照明EPTFE膜行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 24年手機行業(yè)市場分析報告
- 2025至2030中國InP基片行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 【國際能源署】全球電動汽車2025展望
- 最小單元應急管理制度
- 稅收征管數字化轉型實踐的國際比較及借鑒
- 2025-2030中國羽絨服行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資方向研究報告
- 黑龍江:用水定額(DB23-T 727-2021)
- 顯微注射技術課件
- 醫(yī)療健康領域的數字化人才培養(yǎng)計劃
- 汽車貼膜外包合同范本
- DB31/T 1341-2021商務辦公建筑合理用能指南
- 綜合門診部管理制度
- 特崗服務協(xié)議書
評論
0/150
提交評論